期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PMA-ASTFA及其在齿轮裂纹定量诊断中的应用 被引量:2
1
作者 杨宇 欧龙辉 +1 位作者 吴家腾 程军圣 《振动工程学报》 EI CSCD 北大核心 2017年第5期849-855,共7页
目前对齿轮裂纹的诊断研究多采用定性诊断,而工程实际中往往更关注定量诊断。由于齿轮裂纹信号往往表现出非线性非平稳特征,处理这类信号通常采用时频分析。自适应最稀疏时频分析(Adaptive and Sparsest TimeFrequency Analysis,简称AST... 目前对齿轮裂纹的诊断研究多采用定性诊断,而工程实际中往往更关注定量诊断。由于齿轮裂纹信号往往表现出非线性非平稳特征,处理这类信号通常采用时频分析。自适应最稀疏时频分析(Adaptive and Sparsest TimeFrequency Analysis,简称ASTFA)是一种新的时频分析方法,相比于经验模态分解(Empirical Mode Decomposition,简称EMD)方法,ASTFA方法能更好地抑制端点效应和模态混淆,但ASTFA方法也存在分解得到的分量排列不规律的缺陷,从而给特征提取时分量的选择带来困难。针对这一问题,提出了一种改进ASTFA算法,即基于主模态分析(Principle Mode Analysis,简称PMA)的自适应最稀疏时频分析(PMA-ASTFA)方法,该方法可以根据所选择的故障特征参数(一个或多个)对内禀模态函数(Intrinsic Mode Function,简称IMF)分量进行排序。根据齿轮故障实验台建立齿轮动力学模型,选择对齿轮裂纹敏感的故障特征参数,再把PMA-ASTFA方法用于实测的齿轮裂纹故障信号处理。实验信号的分析结果表明,提出的方法可以有效地实现齿轮裂纹故障的定量诊断。 展开更多
关键词 故障诊断 改进的自适应最稀疏时频分析 主模态分析 齿轮裂纹 定量诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部