Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri...Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.展开更多
The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different ...The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.展开更多
In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were ana...In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were analyzed via X-ray diffraction after dry-wet cycles. By combining in-situ SEM and digital image processing(DIP), the damage evolution process and damage characteristic parameters of each stage were obtained. The experimental results indicate that the hydration and dissolution of minerals can not be a determinant factor in structure damage. The micro-structural damage is due to disintegration of mineral aggregates, leading to changes in the number and size of cracks and pores. The damage degree of specimens is related to its initial structure, and the micro-structural damage intensifies and finally tends to stabilize with cycle times increased.展开更多
Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT was...Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).展开更多
Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylaceta...Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylacetamide(DMAc). Atomic force microscopy (AFM) was employed to observe the microstructure of the composite film. The thermal property was investigated by TGA and mechanical property was characterized by DXLL-1000 electromechanical material testing machine. The results showed that the breaking strength of the film containing 0.5% ZnO was great enhanced. The average size of ZnO particles was below 100 nm. The introduction of ZnO as nano filler in PSA react as UV shield effect and make the composite mechanical property improved.展开更多
Conductive polymer composites based on crystalline polymer matrix have been prepared by using an in-situ polymerization process of pyrrole in amorphous poly (ethylene terephthalate) (PET) film. The DSC and WAXD me...Conductive polymer composites based on crystalline polymer matrix have been prepared by using an in-situ polymerization process of pyrrole in amorphous poly (ethylene terephthalate) (PET) film. The DSC and WAXD measurement and SEM observation show that liquid-induced crystallization of PET matrix has occurred during the preparation of composite films. Depending upon the equilibrium degree of swelling and crystallinity, the limited depth of penetration of pyrrole molecules results in a skin-core structure of the composite film. The skin layer containing charge transfer intercalated polypyrrole has a surface resistance of 3.5×10;Ω. Rigid and heat-resistant polypyrrole molecules formed in PET film increase the tensile modulus and, especially, the rigidity of PET at elevated temperatures. However, they decrease the tensile strength and elongation at break, and impair the thermal ductility of PET.展开更多
A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diamin...A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diaminodiphenyl sulfone (DDS) and terephthaloyl chloride (TPC) in the common solvent N, N-Dimethyl- -acetamide (DMAc). Nano filler is a certain nano titanium oxide modified by silicon oxide (TMS), which plays the role of UV resistance additives. Properties of the novel composite materials were characterized by Atomic Force microscopy (AFM), thermal gravimetric Analysis (TGA) and Ultraviolet Spectroscopy. AFM had showed the sizes and distributions of TMS particles in the nanocomposite. Ultraviolet Spectroscopy for the nanocomposites showed a large absorption in UV band. TGA showed the decomposition temperature was increased over ten degrees with 0.5% wt TMS for this nanocomposite compared with pure PSA.展开更多
PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivit...PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.展开更多
Rechargeable aqueous magnesium-ion batteries(MIBs)show great promise for low-cost,high-safety,and high-performance energy storage applications.Although manganese dioxide(MnO_(2))is considered as a potential electrode ...Rechargeable aqueous magnesium-ion batteries(MIBs)show great promise for low-cost,high-safety,and high-performance energy storage applications.Although manganese dioxide(MnO_(2))is considered as a potential electrode material for aqueous MIBs,the low electrical conductivity and unsatisfactory cycling performance greatly hinder the practical application of MnO_(2)electrode.To overcome these problems,herein,a novel Mg-intercalation engineering approach for MnO_(2)electrode to be used in aqueous MIBs is presented,wherein the structural regulation and electrochemical performance of the Mg-intercalation MnO_(2)(denoted as MMO)electrode were thoroughly investigated by density functional theory(DFT)calculations and in-situ Raman investigation.The results demonstrate that the Mg intercalation is essential to adjusting the charge/ion state and electronic band gap of MMO electrode,as well as the highly reversible phase transition of the MMO electrode during the charging-discharging process.Because of these remarkable characteristics,the MMO electrode can be capable of delivering a significant specific capacity of~419.8 mAh·g^(−1),while exhibiting a good cycling capability over 1000 cycles in 1 M aqueous MgCl_(2) electrolyte.On the basis of such MMO electrode,we have successfully developed a soft-packaging aqueous MIB with excellent electrochemical properties,revealing its huge application potential as the efficient energy storage devices.展开更多
A noncrystallizable semiaromatic polyamide copolymer(NSAP) was dissolved in molten caprolactam, and PA6/ NSAP blends were produced in-situ via the anionic ring-opening polymerization of caprolactam. The presence of ...A noncrystallizable semiaromatic polyamide copolymer(NSAP) was dissolved in molten caprolactam, and PA6/ NSAP blends were produced in-situ via the anionic ring-opening polymerization of caprolactam. The presence of a single loss tangent(tanS) peak measured by means of dynamic mechanical analysis(DMA) proves the miscibility between PA6 and NSAP in the blends. It was found that there existed drastic changes in the crystallographic form and crystallization kinetics for the in-situ blends, e.g. , when 20% NSAP was added, nearly all crystallites existed in the ,y form and the crystallization could hardly occur upon cooling even at a rate of 2.5 ℃/min. Moreover, cold crystallization appears during the subsequent heating, and its melting point is 40 ℃ lower than that of the virgin system. On the other hand, the size of the spherulites only decreases modestly. It is suggested that the introduction of irregular stiff segments originated from NSAP into PA6 macromolecule chain, which resulted from transamidation during the polymerization play a dominant role in the drastic change of crystallization kinetics and the resultant morphology of the in-situ blends.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
In this paper,the kaolin/urea intercalation composites prepared by direct intercalation method and the catalysis composites containing ZSM-5 molecular sieve synthesized based on the kaolin/urea intercalation composite...In this paper,the kaolin/urea intercalation composites prepared by direct intercalation method and the catalysis composites containing ZSM-5 molecular sieve synthesized based on the kaolin/urea intercalation composites by an in-situ crystallization technique were investigated.The effects of the intercalation ratios and de-intercalation rate and the amounts of added kaolin/urea intercalation composite on the synthesis of the catalysis composites containing the ZSM-5 molecular sieve were studied.The samples were characterized by X-ray diffraction,FT-IR,TG-DTA,N2 adsorption-desorption,and SEM,respectively.The results showed that the structure of the samples prepared by kaolin/urea intercalation composite was pure ZSM-5 molecular sieve.The crystallinity of ZSM-5 molecular sieve increased at first and then decreased with the increase of intercalation ratio of kaolin/urea intercalation composite.When the intercalation ratio was 62%,the crystallinity of ZSM-5 molecular sieve was lower.When the amount of added kaolin/urea intercalation composite with an intercalation ratio of 22%was 3%,the crystallinity of ZSM-5 zeolite was improved to reach 65%.Compared to the crystallization product formed without adding kaolin/urea intercalation composite,the crystallinity of ZSM-5 molecular sieve has increased by 54.8%.The catalytic composites containing ZSM-5 molecular sieve had better thermal stability with a wide pore structure,featuring a particle diameter of about 2.5μm,a BET specific surface area of 236 m^2/g,and a pore size of 10.6 nm.展开更多
In-situ gelation of aqueous sulfomethylated resorcinol formaldehyde (SMRF) system inBerea core has been investigated. Two sets of displacement experiments were conducted with thissystem (containing 5% NaCl, 0. 036% Ca...In-situ gelation of aqueous sulfomethylated resorcinol formaldehyde (SMRF) system inBerea core has been investigated. Two sets of displacement experiments were conducted with thissystem (containing 5% NaCl, 0. 036% CaCl_2. 2H_2O). The brine permeabilities of the coreswere reduced significantly from about 600 to 0.1 md. The in-situ gelation in Berea core occurreda little bit earlier than gelation anticipated from bulk test in the experiments. The gel time waseasier to control at initial pH between 6 and 8. During injection of SMRF system, the apparentviscosity was less than 1 mPa·s at 41℃.展开更多
Poly(decamethylene terephthalamide/decamethylene isophthalamide)-block-polyvinyl alcoho)(PA10 T/10 IPEG) copolymer/graphene oxide(GO) composites were prepared via in-situ melt polymerization and two different nano-fil...Poly(decamethylene terephthalamide/decamethylene isophthalamide)-block-polyvinyl alcoho)(PA10 T/10 IPEG) copolymer/graphene oxide(GO) composites were prepared via in-situ melt polymerization and two different nano-filler addition approaches were compared. The relationship between the micro-structure and performance of the elastomer composites prepared by one-step and two-step methods was explored. The results show that the two-step method significantly promoted the dispersion of the GO in a polymer matrix, and facilitated the grafting of more hard molecular chains. Thus, the elastic modulus and tensile strength of the nanocomposite have been significantly improved by the presence of GO. This was because of the strong interaction between the functional groups on the surface of the GO and the hard molecular chains. This would be also be favorable to load transfer across the interface. Additionally, the elongation at the break of composites increased by 10% with the addition of a small amount of GO(0.2% wt). This is because hard domains tend to be enriched on the surface of GO in composites and act as a lubricating layer at the interface between the GO and matrix, leading to increased deformation ability. This work provides an effective strategy to prepare elastomer composites with high strength and toughness.展开更多
With the development of stable alkali metal anodes,V_(2)O_(5) is gaining traction as a cathode material due to its high theoretical capacity and the ability to intercalate Li,Na and K ions.Herein,we report a method fo...With the development of stable alkali metal anodes,V_(2)O_(5) is gaining traction as a cathode material due to its high theoretical capacity and the ability to intercalate Li,Na and K ions.Herein,we report a method for synthesizing structured orthorhombic V_(2)O_(5) microspheres and investigate Li intercalation/deintercalation into this material.For industry adoption,the electrochemical behavior of V_(2)O_(5) as well as structural and phase transformation attributing to Li intercalation reaction must be further investigated.Our synthesized V_(2)O_(5) microspheres consisted of small primary particles that were strongly joined together and exhibited good cycle stability and rate capability,triggered by reversible volume change and rapid Li ion diffusion.In addition,the reversibility of phase transformation(a,e,d,c and xLixV_(2)O_(5))and valence state evolution(5+,4+,and 3.5+)during intercalation/de-intercalation were studied via in-situ X-ray powder diffraction and X-ray absorption near edge structure analyses.展开更多
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)po...The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.展开更多
Quasi-solid-state lithium-metal batteries(QSLMBs)are promising candidates for next-generation battery systems due to their high energy density and enhanced safety.However,their practical application has been hindered ...Quasi-solid-state lithium-metal batteries(QSLMBs)are promising candidates for next-generation battery systems due to their high energy density and enhanced safety.However,their practical application has been hindered by low ionic conductivity and the growth of lithium dendrites.To achieve ordered transport of Li^(+)ions in quasi-solid electrolytes(QSEs),improve ionic conductivity,and homogenize Li^(+)fluxes on the surface of the lithium metal anode(LMA),we propose a novel method.This method involves constructing"ion relay stations"in QSEs by introducing cyano-functionalized boron nitride nanosheets into pentaerythritol tetraacrylate(PETEA)-based polymer electrolytes.The functionalized boron nitride nanosheets promote the dissociation of lithium salts through ion-dipole interactions,optimizing the solvated structure to facilitate the orderly transport of Li+ions,resulting in an ionic conductivity of2.5×10^(-3)S cm^(-1)at 30℃.Notably,this strategy regulates the Li^(+)distribution on the surface of the LMA,effectively inhibiting the growth of lithium dendrites,Li‖Li symmetrical cells using this type of electrolyte maintain stability for over 2000 h at 2 mA cm^(-2)and 2 mAh cm^(-2).Additionally,with a high LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)loading of 8.5 mg cm^(-2),the cells exhibit excellent cycling performance,retaining a high capacity after 400 cycles.This innovative QSE design strategy represents a significant advancement towards the development of high-performance QSLMBs.展开更多
In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy sto...In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy storage,multi-band electromagnetic interference(EMI)shielding,and structural design into bio-based materials.Specifically,conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide(TEMPO)-oxidized cellulose fiber skeleton,where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites(specific surface area of 105.6 m2 g-1).Benefiting from the special hierarchical porous structure of the material,the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm^(-2)at 5 m A cm^(-2)and areal energy density of 3.99 m Wh cm^(-2)(2005 m W cm^(-2))with an excellent stability of maintaining 90.23%after 10,000 cycles at 50 m A cm^(-2).Meanwhile,the composites showed a high electrical conductivity of 877.19 S m-1 and excellent EMI efficiency(>99.99%)in multiple wavelength bands.The composite material’s EMI values exceed 100 d B across the L,S,C,and X bands,effectively shielding electromagnetic waves in daily life.The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding,contributing to a more sustainable future.展开更多
Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden.Delivery of drug to particular parts of the anterior or posterior segment has been ...Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden.Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system.Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability(<5%).The designing of a novel approach for a safe,simple,and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem.Over the past decades,several novel approaches involving different strategies have been developed to improve the ocular delivery system.Among these,the ophthalmic in-situ gel has attained a great attention over the past few years.This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system.展开更多
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
基金This work was supported by the Major Science and Technology Projects of Henan Province(221100230200)the National Key Research and Development Program of China(2020YFB1713500)Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210).
文摘Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.
基金the support of the National Natural Science Foundation of China(Nos.51803177,51973191,51533008,and 51636002)National Key R&D Program of China(No.2016YFA0200200)+5 种基金the China Postdoctoral Science Foundation(No.2021M690134)Hundred Talents Program of Zhejiang University(188020*194231701/113)Key Research and Development Plan of Zhejiang Province(2018C01049)the National Postdoctoral Program for Innovative Talents(No.BX201700209)the Fundamental Research Funds for the Central Universities(2021FZZX001-17),the Natural Science Foundation of Jiangsu Province(BK20210353)the Fundamental Research Funds for the Central Universities(No.30920041106).
文摘The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.
基金Funded by the National Natural Science Foundation of China(No.51574201)the Research and Innovation Team of Provincial U niversities in Sichuan(18TD0014)the Excellent Youth Foundat ion of Sichuan Scientific Committee(2019JDJQ0037)
文摘In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were analyzed via X-ray diffraction after dry-wet cycles. By combining in-situ SEM and digital image processing(DIP), the damage evolution process and damage characteristic parameters of each stage were obtained. The experimental results indicate that the hydration and dissolution of minerals can not be a determinant factor in structure damage. The micro-structural damage is due to disintegration of mineral aggregates, leading to changes in the number and size of cracks and pores. The damage degree of specimens is related to its initial structure, and the micro-structural damage intensifies and finally tends to stabilize with cycle times increased.
文摘Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).
基金Education Commission of Shanghai (No04AB19)Science and Technology Commission of Shanghai Municipal Government(Nano Founds No 0452NM051)
文摘Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylacetamide(DMAc). Atomic force microscopy (AFM) was employed to observe the microstructure of the composite film. The thermal property was investigated by TGA and mechanical property was characterized by DXLL-1000 electromechanical material testing machine. The results showed that the breaking strength of the film containing 0.5% ZnO was great enhanced. The average size of ZnO particles was below 100 nm. The introduction of ZnO as nano filler in PSA react as UV shield effect and make the composite mechanical property improved.
文摘Conductive polymer composites based on crystalline polymer matrix have been prepared by using an in-situ polymerization process of pyrrole in amorphous poly (ethylene terephthalate) (PET) film. The DSC and WAXD measurement and SEM observation show that liquid-induced crystallization of PET matrix has occurred during the preparation of composite films. Depending upon the equilibrium degree of swelling and crystallinity, the limited depth of penetration of pyrrole molecules results in a skin-core structure of the composite film. The skin layer containing charge transfer intercalated polypyrrole has a surface resistance of 3.5×10;Ω. Rigid and heat-resistant polypyrrole molecules formed in PET film increase the tensile modulus and, especially, the rigidity of PET at elevated temperatures. However, they decrease the tensile strength and elongation at break, and impair the thermal ductility of PET.
文摘A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diaminodiphenyl sulfone (DDS) and terephthaloyl chloride (TPC) in the common solvent N, N-Dimethyl- -acetamide (DMAc). Nano filler is a certain nano titanium oxide modified by silicon oxide (TMS), which plays the role of UV resistance additives. Properties of the novel composite materials were characterized by Atomic Force microscopy (AFM), thermal gravimetric Analysis (TGA) and Ultraviolet Spectroscopy. AFM had showed the sizes and distributions of TMS particles in the nanocomposite. Ultraviolet Spectroscopy for the nanocomposites showed a large absorption in UV band. TGA showed the decomposition temperature was increased over ten degrees with 0.5% wt TMS for this nanocomposite compared with pure PSA.
文摘PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.
基金financially supported by the National Nature Science Foundations of China(Nos. 52002157 and 51873083)the Nature Science Foundations of Jiangsu Province,China(No. BK20190976)the Undergraduate Research & Practice Innovation Program of Jiangsu Province,China(No. 202010289017Z)
文摘Rechargeable aqueous magnesium-ion batteries(MIBs)show great promise for low-cost,high-safety,and high-performance energy storage applications.Although manganese dioxide(MnO_(2))is considered as a potential electrode material for aqueous MIBs,the low electrical conductivity and unsatisfactory cycling performance greatly hinder the practical application of MnO_(2)electrode.To overcome these problems,herein,a novel Mg-intercalation engineering approach for MnO_(2)electrode to be used in aqueous MIBs is presented,wherein the structural regulation and electrochemical performance of the Mg-intercalation MnO_(2)(denoted as MMO)electrode were thoroughly investigated by density functional theory(DFT)calculations and in-situ Raman investigation.The results demonstrate that the Mg intercalation is essential to adjusting the charge/ion state and electronic band gap of MMO electrode,as well as the highly reversible phase transition of the MMO electrode during the charging-discharging process.Because of these remarkable characteristics,the MMO electrode can be capable of delivering a significant specific capacity of~419.8 mAh·g^(−1),while exhibiting a good cycling capability over 1000 cycles in 1 M aqueous MgCl_(2) electrolyte.On the basis of such MMO electrode,we have successfully developed a soft-packaging aqueous MIB with excellent electrochemical properties,revealing its huge application potential as the efficient energy storage devices.
基金Supported by the National Natural Science Foundation of China(No50373037)
文摘A noncrystallizable semiaromatic polyamide copolymer(NSAP) was dissolved in molten caprolactam, and PA6/ NSAP blends were produced in-situ via the anionic ring-opening polymerization of caprolactam. The presence of a single loss tangent(tanS) peak measured by means of dynamic mechanical analysis(DMA) proves the miscibility between PA6 and NSAP in the blends. It was found that there existed drastic changes in the crystallographic form and crystallization kinetics for the in-situ blends, e.g. , when 20% NSAP was added, nearly all crystallites existed in the ,y form and the crystallization could hardly occur upon cooling even at a rate of 2.5 ℃/min. Moreover, cold crystallization appears during the subsequent heating, and its melting point is 40 ℃ lower than that of the virgin system. On the other hand, the size of the spherulites only decreases modestly. It is suggested that the introduction of irregular stiff segments originated from NSAP into PA6 macromolecule chain, which resulted from transamidation during the polymerization play a dominant role in the drastic change of crystallization kinetics and the resultant morphology of the in-situ blends.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金This work was financially supported by the National Natural Science Foundation of China(No.21371055)the Key Project of Scientific Research Project of Hunan Education Department(No.18A313).
文摘In this paper,the kaolin/urea intercalation composites prepared by direct intercalation method and the catalysis composites containing ZSM-5 molecular sieve synthesized based on the kaolin/urea intercalation composites by an in-situ crystallization technique were investigated.The effects of the intercalation ratios and de-intercalation rate and the amounts of added kaolin/urea intercalation composite on the synthesis of the catalysis composites containing the ZSM-5 molecular sieve were studied.The samples were characterized by X-ray diffraction,FT-IR,TG-DTA,N2 adsorption-desorption,and SEM,respectively.The results showed that the structure of the samples prepared by kaolin/urea intercalation composite was pure ZSM-5 molecular sieve.The crystallinity of ZSM-5 molecular sieve increased at first and then decreased with the increase of intercalation ratio of kaolin/urea intercalation composite.When the intercalation ratio was 62%,the crystallinity of ZSM-5 molecular sieve was lower.When the amount of added kaolin/urea intercalation composite with an intercalation ratio of 22%was 3%,the crystallinity of ZSM-5 zeolite was improved to reach 65%.Compared to the crystallization product formed without adding kaolin/urea intercalation composite,the crystallinity of ZSM-5 molecular sieve has increased by 54.8%.The catalytic composites containing ZSM-5 molecular sieve had better thermal stability with a wide pore structure,featuring a particle diameter of about 2.5μm,a BET specific surface area of 236 m^2/g,and a pore size of 10.6 nm.
文摘In-situ gelation of aqueous sulfomethylated resorcinol formaldehyde (SMRF) system inBerea core has been investigated. Two sets of displacement experiments were conducted with thissystem (containing 5% NaCl, 0. 036% CaCl_2. 2H_2O). The brine permeabilities of the coreswere reduced significantly from about 600 to 0.1 md. The in-situ gelation in Berea core occurreda little bit earlier than gelation anticipated from bulk test in the experiments. The gel time waseasier to control at initial pH between 6 and 8. During injection of SMRF system, the apparentviscosity was less than 1 mPa·s at 41℃.
基金the financial support from the Jiangsu Provincial Key Research and Development Program (Grant No. BE2019008)the Natural Science Foundation of China (Grant No. 51573103, 21274094 and 21304060)。
文摘Poly(decamethylene terephthalamide/decamethylene isophthalamide)-block-polyvinyl alcoho)(PA10 T/10 IPEG) copolymer/graphene oxide(GO) composites were prepared via in-situ melt polymerization and two different nano-filler addition approaches were compared. The relationship between the micro-structure and performance of the elastomer composites prepared by one-step and two-step methods was explored. The results show that the two-step method significantly promoted the dispersion of the GO in a polymer matrix, and facilitated the grafting of more hard molecular chains. Thus, the elastic modulus and tensile strength of the nanocomposite have been significantly improved by the presence of GO. This was because of the strong interaction between the functional groups on the surface of the GO and the hard molecular chains. This would be also be favorable to load transfer across the interface. Additionally, the elongation at the break of composites increased by 10% with the addition of a small amount of GO(0.2% wt). This is because hard domains tend to be enriched on the surface of GO in composites and act as a lubricating layer at the interface between the GO and matrix, leading to increased deformation ability. This work provides an effective strategy to prepare elastomer composites with high strength and toughness.
基金supported by both the Technology Innovation Program(20004958,Development of ultra-high performance supercapacitor and high power module)funded by the Ministry of Trade,Industry and Energy(MOTIE)the R&D Convergence Program(CAP-15-02-KBSI)of the National Research Council of Science&Technology,Republic of Korea。
文摘With the development of stable alkali metal anodes,V_(2)O_(5) is gaining traction as a cathode material due to its high theoretical capacity and the ability to intercalate Li,Na and K ions.Herein,we report a method for synthesizing structured orthorhombic V_(2)O_(5) microspheres and investigate Li intercalation/deintercalation into this material.For industry adoption,the electrochemical behavior of V_(2)O_(5) as well as structural and phase transformation attributing to Li intercalation reaction must be further investigated.Our synthesized V_(2)O_(5) microspheres consisted of small primary particles that were strongly joined together and exhibited good cycle stability and rate capability,triggered by reversible volume change and rapid Li ion diffusion.In addition,the reversibility of phase transformation(a,e,d,c and xLixV_(2)O_(5))and valence state evolution(5+,4+,and 3.5+)during intercalation/de-intercalation were studied via in-situ X-ray powder diffraction and X-ray absorption near edge structure analyses.
基金the funding from the National Natural Science Foundation of China(22178301 and 21938011)the grant from the Science&Technology Department of Zhejiang Province(2023C01182)+3 种基金the funding from the Natural Science Foundation of Zhejiang Province(LR21B060003)supported by the Fundamental Research Funds for the Central Universities(226-2024-00023)Shanxi Institute of Zhejiang University for New Materials and Chemical Industry(2022SZ-TD005)Quzhou Science and Technology Program(2021NC02).
文摘The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.
基金supported by the Natural Science Foundation of China(52488201)。
文摘Quasi-solid-state lithium-metal batteries(QSLMBs)are promising candidates for next-generation battery systems due to their high energy density and enhanced safety.However,their practical application has been hindered by low ionic conductivity and the growth of lithium dendrites.To achieve ordered transport of Li^(+)ions in quasi-solid electrolytes(QSEs),improve ionic conductivity,and homogenize Li^(+)fluxes on the surface of the lithium metal anode(LMA),we propose a novel method.This method involves constructing"ion relay stations"in QSEs by introducing cyano-functionalized boron nitride nanosheets into pentaerythritol tetraacrylate(PETEA)-based polymer electrolytes.The functionalized boron nitride nanosheets promote the dissociation of lithium salts through ion-dipole interactions,optimizing the solvated structure to facilitate the orderly transport of Li+ions,resulting in an ionic conductivity of2.5×10^(-3)S cm^(-1)at 30℃.Notably,this strategy regulates the Li^(+)distribution on the surface of the LMA,effectively inhibiting the growth of lithium dendrites,Li‖Li symmetrical cells using this type of electrolyte maintain stability for over 2000 h at 2 mA cm^(-2)and 2 mAh cm^(-2).Additionally,with a high LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)loading of 8.5 mg cm^(-2),the cells exhibit excellent cycling performance,retaining a high capacity after 400 cycles.This innovative QSE design strategy represents a significant advancement towards the development of high-performance QSLMBs.
基金the financial support of a special fund from the Beijing Key Laboratory of Lignocellulosic Chemistry,College of Materials Science and Technology,Beijing Forestry UniversityFinancial support from NSERC Discovery grant(RGPIN-2017-06737)+1 种基金Canada Research Chair program is also acknowledgedthe China Scholarship Council(CSC)for its financial support(CSC No.202306510047)。
文摘In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy storage,multi-band electromagnetic interference(EMI)shielding,and structural design into bio-based materials.Specifically,conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide(TEMPO)-oxidized cellulose fiber skeleton,where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites(specific surface area of 105.6 m2 g-1).Benefiting from the special hierarchical porous structure of the material,the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm^(-2)at 5 m A cm^(-2)and areal energy density of 3.99 m Wh cm^(-2)(2005 m W cm^(-2))with an excellent stability of maintaining 90.23%after 10,000 cycles at 50 m A cm^(-2).Meanwhile,the composites showed a high electrical conductivity of 877.19 S m-1 and excellent EMI efficiency(>99.99%)in multiple wavelength bands.The composite material’s EMI values exceed 100 d B across the L,S,C,and X bands,effectively shielding electromagnetic waves in daily life.The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding,contributing to a more sustainable future.
文摘Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden.Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system.Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability(<5%).The designing of a novel approach for a safe,simple,and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem.Over the past decades,several novel approaches involving different strategies have been developed to improve the ocular delivery system.Among these,the ophthalmic in-situ gel has attained a great attention over the past few years.This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system.