期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adaptive multiscale wavelet-guided periodic sparse representation for bearing incipient fault feature extraction
1
作者 NIU MaoGui JIANG HongKai YAO RenHe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第11期3585-3596,共12页
Currently, accurately extracting early-stage bearing incipient fault features is urgent and challenging. This paper introduces a novel method called adaptive multiscale wavelet-guided periodic sparse representation(AM... Currently, accurately extracting early-stage bearing incipient fault features is urgent and challenging. This paper introduces a novel method called adaptive multiscale wavelet-guided periodic sparse representation(AMWPSR) to address this issue. For the first time, the dual-tree complex wavelet transform is applied to construct the linear transformation for the AMWPSR model.This transform offers superior shift invariance and minimizes spectrum aliasing. By integrating this linear transformation with the generalized minimax concave penalty term, a new sparse representation model is developed to recover faulty impulse components from heavily disturbed vibration signals. During each iteration of the AMWPSR process, the impulse periods of sparse signals are adaptively estimated, and the periodicity of the latest sparse signal is augmented using the final estimated period. Simulation studies demonstrate that AMWPSR can effectively estimate periodic impulses even in noisy environments, demonstrating greater accuracy and robustness in recovering faulty impulse components than existing techniques.Further validation through research on two sets of bearing life cycle data shows that AMWPSR delivers superior fault diagnosis results. 展开更多
关键词 incipient fault feature extraction dual-tree complex wavelet transform generalized minimax concave penalty periodic sparse representation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部