A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successful...A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.展开更多
As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and l...As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and low time consumption for member structural system. To fully utilize its advantage in parallel computation, it is the time to extend LIM to 2D and 3D continua analysis. In this paper, a 2D finite element library with the capability of modeling arbitrary configurations is developed. Some illustrative numerical examples are solved by using the proposed library; the obtained results are compared with those obtained from both traditional displacement-based FEM and analytical solutions, which has clearly shown the advantages of LIM.展开更多
Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements ...Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.展开更多
We have deduced incremental harmonic balance an iteration scheme in the (IHB) method using the harmonic balance plus the Newton-Raphson method. Since the convergence of the iteration is dependent upon the initial va...We have deduced incremental harmonic balance an iteration scheme in the (IHB) method using the harmonic balance plus the Newton-Raphson method. Since the convergence of the iteration is dependent upon the initial values in the iteration, the convergent region is greatly restricted for some cases. In this contribution, in order to enlarge the convergent region of the IHB method, we constructed the zeroth-order deformation equation using the homotopy analysis method, in which the IHB method is employed to solve the deformation equation with an embedding parameter as the active increment. Taking the Duffing and the van der Pol equations as examples, we obtained the highly accurate solutions. Importantly, the presented approach renders a convenient way to control and adjust the convergence.展开更多
The incremental harmonic balance method was extended to analyze the flutter of systems with multiple structural strong nonlinearities. The strongly nonlinear cubic plunging and pitching stiffness terms were considered...The incremental harmonic balance method was extended to analyze the flutter of systems with multiple structural strong nonlinearities. The strongly nonlinear cubic plunging and pitching stiffness terms were considered in the flutter equations of two-dimensional airfoil. First, the equations were transferred into matrix form, then the vibration process was divided into the persistent incremental processes of vibration moments. And the expression of their solutions could be obtained by using a certain amplitude as control parameter in the harmonic balance process, and then the bifurcation, limit cycle flutter phenomena and the number of harmonic terms were analyzed. Finally, numerical results calculated by the Runge-Kutta method were given to verify the results obtained by the proposed procedure. It has been shown that the incremental harmonic method is effective and precise in the analysis of strongly nonlinear flutter with multiple structural nonlinearities.展开更多
Dielectric elastomer(DE) is suitable in soft transducers for broad applications,among which many are subjected to dynamic loadings, either mechanical or electrical or both. The tuning behaviors of these DE devices cal...Dielectric elastomer(DE) is suitable in soft transducers for broad applications,among which many are subjected to dynamic loadings, either mechanical or electrical or both. The tuning behaviors of these DE devices call for an efficient and reliable method to analyze the dynamic response of DE. This remains to be a challenge since the resultant vibration equation of DE, for example, the vibration of a DE balloon considered here is highly nonlinear with higher-order power terms and time-dependent coefficients. Previous efforts toward this goal use largely the numerical integration method with the simple harmonic balance method as a supplement. The numerical integration and the simple harmonic balance method are inefficient for large parametric analysis or with difficulty in improving the solution accuracy. To overcome the weakness of these two methods,we describe formulations of the incremental harmonic balance(IHB) method for periodic forced solutions of such a unique system. Combined with an arc-length continuation technique, the proposed strategy can capture the whole solution branches, both stable and unstable, automatically with any desired accuracy.展开更多
By the improvement of Riks’and Crisfield’s arc-length method,the adaptiveparameter incremental method is preasted for predicting the snapping response ofstructures. Its justification is fulfilled. Finally,the effect...By the improvement of Riks’and Crisfield’s arc-length method,the adaptiveparameter incremental method is preasted for predicting the snapping response ofstructures. Its justification is fulfilled. Finally,the effectiveness of this method isdemonstrated by solving the snapping response of spherical caps subjected to centrallydistributed pressures.展开更多
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a...Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.展开更多
This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two node...This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation. The static and dynamic equilibrium equations of mooring lines are established. An incremental-iterative method is used to determine the initial static equilibrium state of cable systems under the action of self weights, buoyancy and current. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method, and examine the effect of various parameters.展开更多
A novel incremental nonlinear detection algorithm is presented for Multiple-Input Multiple-Output (MIMO) system. In this algorithm, the received data at multiple receiver antennas are nonlinearly mapped and then sum...A novel incremental nonlinear detection algorithm is presented for Multiple-Input Multiple-Output (MIMO) system. In this algorithm, the received data at multiple receiver antennas are nonlinearly mapped and then summed with weights. The weight coefficients are incrementally computed to avoid direct computation of the inverse of a matrix, which greatly reduce the computational complexity. Simulation and comparison show that the proposed algorithm can obtain better performance of Bit Error Rate (BER) than linear Minimum Mean Square Error (MMSE).展开更多
Warp yarns and weft yarns of plain woven fabric are the principal axes of mate- rial of fabric. They are orthogonal in their original con?guration, but are obliquely crisscross in deformed con?guration in general. I...Warp yarns and weft yarns of plain woven fabric are the principal axes of mate- rial of fabric. They are orthogonal in their original con?guration, but are obliquely crisscross in deformed con?guration in general. In this paper the expressions of incremental components of strain tensor are derived, the non-linear model of woven fabric is linearized physically and its geometric non-linearity survives. The convenience of determining the total deformation is shown by the choice of the coordinate system of the principal axes of the material, with the convergence of the incremental methods illustrated by examples. This incremental model furnishes a basis for numerical simulations of fabric draping and wrinkling based on the micro-mechanical model of fabric.展开更多
A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed ...A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.展开更多
基金National Natural Science Foundation of China(No.10872128)
文摘A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.
基金the National Natural Science Foundation of China (No. 10872128)
文摘As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and low time consumption for member structural system. To fully utilize its advantage in parallel computation, it is the time to extend LIM to 2D and 3D continua analysis. In this paper, a 2D finite element library with the capability of modeling arbitrary configurations is developed. Some illustrative numerical examples are solved by using the proposed library; the obtained results are compared with those obtained from both traditional displacement-based FEM and analytical solutions, which has clearly shown the advantages of LIM.
基金the National Natural Science Foundation of China(No.10872128)
文摘Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.
基金supported by the National Natural Science Foundation of China (10772202)Doctoral Program Foundation of Ministry of Education of China (20050558032)Guangdong Province Natural Science Foundation (07003680, 05003295)
文摘We have deduced incremental harmonic balance an iteration scheme in the (IHB) method using the harmonic balance plus the Newton-Raphson method. Since the convergence of the iteration is dependent upon the initial values in the iteration, the convergent region is greatly restricted for some cases. In this contribution, in order to enlarge the convergent region of the IHB method, we constructed the zeroth-order deformation equation using the homotopy analysis method, in which the IHB method is employed to solve the deformation equation with an embedding parameter as the active increment. Taking the Duffing and the van der Pol equations as examples, we obtained the highly accurate solutions. Importantly, the presented approach renders a convenient way to control and adjust the convergence.
基金Project supported by the Ph. D. Programs Foundation of Ministry of Education of China (No.20050558032) the Natural Science Foundation of Guangdong Province of China (No.05003295) the Foundation of Sun Yat-sen University Advanced Research Center (No.06M8) the Young Teacher Scientific Research Foundation of Sun Sat-sen University (No.1131011)
文摘The incremental harmonic balance method was extended to analyze the flutter of systems with multiple structural strong nonlinearities. The strongly nonlinear cubic plunging and pitching stiffness terms were considered in the flutter equations of two-dimensional airfoil. First, the equations were transferred into matrix form, then the vibration process was divided into the persistent incremental processes of vibration moments. And the expression of their solutions could be obtained by using a certain amplitude as control parameter in the harmonic balance process, and then the bifurcation, limit cycle flutter phenomena and the number of harmonic terms were analyzed. Finally, numerical results calculated by the Runge-Kutta method were given to verify the results obtained by the proposed procedure. It has been shown that the incremental harmonic method is effective and precise in the analysis of strongly nonlinear flutter with multiple structural nonlinearities.
基金the National Natural Science Foundation of China(Nos.11702215 and11972277)the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2017JQ5062 and 2018JQ1029)。
文摘Dielectric elastomer(DE) is suitable in soft transducers for broad applications,among which many are subjected to dynamic loadings, either mechanical or electrical or both. The tuning behaviors of these DE devices call for an efficient and reliable method to analyze the dynamic response of DE. This remains to be a challenge since the resultant vibration equation of DE, for example, the vibration of a DE balloon considered here is highly nonlinear with higher-order power terms and time-dependent coefficients. Previous efforts toward this goal use largely the numerical integration method with the simple harmonic balance method as a supplement. The numerical integration and the simple harmonic balance method are inefficient for large parametric analysis or with difficulty in improving the solution accuracy. To overcome the weakness of these two methods,we describe formulations of the incremental harmonic balance(IHB) method for periodic forced solutions of such a unique system. Combined with an arc-length continuation technique, the proposed strategy can capture the whole solution branches, both stable and unstable, automatically with any desired accuracy.
文摘By the improvement of Riks’and Crisfield’s arc-length method,the adaptiveparameter incremental method is preasted for predicting the snapping response ofstructures. Its justification is fulfilled. Finally,the effectiveness of this method isdemonstrated by solving the snapping response of spherical caps subjected to centrallydistributed pressures.
基金supported by National Natural Science Foundation of China(No. 50175034).
文摘Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.
基金supported by the National Natural Science Foundation of China (Grant No.11072052)the National High Technology Research and Development Program of China (863 Program,Grant No.2006AA09A109-3)
文摘This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation. The static and dynamic equilibrium equations of mooring lines are established. An incremental-iterative method is used to determine the initial static equilibrium state of cable systems under the action of self weights, buoyancy and current. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method, and examine the effect of various parameters.
文摘A novel incremental nonlinear detection algorithm is presented for Multiple-Input Multiple-Output (MIMO) system. In this algorithm, the received data at multiple receiver antennas are nonlinearly mapped and then summed with weights. The weight coefficients are incrementally computed to avoid direct computation of the inverse of a matrix, which greatly reduce the computational complexity. Simulation and comparison show that the proposed algorithm can obtain better performance of Bit Error Rate (BER) than linear Minimum Mean Square Error (MMSE).
基金Project supported by the National Natural Science Foundation of China (No. 10272079).
文摘Warp yarns and weft yarns of plain woven fabric are the principal axes of mate- rial of fabric. They are orthogonal in their original con?guration, but are obliquely crisscross in deformed con?guration in general. In this paper the expressions of incremental components of strain tensor are derived, the non-linear model of woven fabric is linearized physically and its geometric non-linearity survives. The convenience of determining the total deformation is shown by the choice of the coordinate system of the principal axes of the material, with the convergence of the incremental methods illustrated by examples. This incremental model furnishes a basis for numerical simulations of fabric draping and wrinkling based on the micro-mechanical model of fabric.
基金Project supported by the National Natural Science Foundation of China(No.10172052).
文摘A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.