期刊文献+
共找到1,771篇文章
< 1 2 89 >
每页显示 20 50 100
Preparation and Characterization of Component Materials for Intermediate Temperature Solid Oxide Fuel Cell by Glycine-Nitrate Process 被引量:5
1
作者 刘荣辉 杜青山 +4 位作者 马文会 王华 杨斌 戴永年 马学菊 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期98-103,共6页
La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and char... La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility. 展开更多
关键词 intermediate temperature solid oxide fuel cell glycine-nitrate process properties of materials rare earths
在线阅读 下载PDF
Status and prospects of intermediate temperature solid oxide fuel cells
2
作者 Bangwu Liu Yue Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期84-90,共7页
Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commerc... Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commercial applications, but it still faces many problems which hamper large-scale commercial applications of SOFC. To reduce the cost of SOFC, intermediate temperature solid oxide fuel cell (IT-SOFC) is presently under rapid development. The status of IT-SOFC was reviewed with emphasis on discussion of their component materials. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 solid oxide fuel cell (SOFC) intermediate temperature solid oxide fuel cell (IT-SOFC) component materials commercial applications
在线阅读 下载PDF
Performance of La_(1-x)Sr_xCr_(1-y)Mn_yO_(3-δ) anode materials for intermediate temperature solid oxide fuel cell 被引量:2
3
作者 陈秀华 马文会 +1 位作者 杨斌 戴永年 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期998-1001,共4页
La1-xSrxCr1-yMnyO3-δ(LSCM) anode materials were synthesized by glycine nitrate process(GNP). Thermo-gravimetric analysis(TGA) and differential scanning calorimetric(DSC) methods were adopted to investigate the reacti... La1-xSrxCr1-yMnyO3-δ(LSCM) anode materials were synthesized by glycine nitrate process(GNP). Thermo-gravimetric analysis(TGA) and differential scanning calorimetric(DSC) methods were adopted to investigate the reaction process of LSCM anode materials. The oxides prepared were characterized via X-ray diffraction(XRD),scanning electron microscope and energy dispersive spectroscopy(SEM-EDS),direct current four-electrode and temperature process reduction(TPR) techniques. XRD patterns indicate that perovskite phase created after the precursor was sintered at 1 000 ℃ for 5 h,and single perovskite-type oxides formed after the precursor were sintered at 1 200 ℃ for 5 h. The powders are micrometer size after sintering at 1 000 ℃ and 1 200 ℃,respectively. The conductivities of LSCM samples increase linearly with increasing the temperature from 250 ℃ to 850 ℃ in air and the maximum value is 32 S/cm for La0.7Sr0.3Cr0.5Mn0.5O3-δ. But it is lower about two orders of magnitude in pure hydrogen or methane than that of the same sample in the air. TPR result indicates that LSCM offers excellently catalytic performance. 展开更多
关键词 常温固体氧化物燃料电池 阳极材料 甘氨酸 硝化
在线阅读 下载PDF
Plasma-Sprayed Coating of an Apatite-Type Lanthanum Silicate Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)
4
作者 陈军 黄建军 +4 位作者 李信军 刘英 齐冰 江石寿 王喜省 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第7期673-676,共4页
Apatite-type lanthanum silicate was successfully synthesized via a solid state re- action protocol at 1400~C in a vacuum for 4 hours. The powder was synthesized faster and at a lower reaction temperature than by conve... Apatite-type lanthanum silicate was successfully synthesized via a solid state re- action protocol at 1400~C in a vacuum for 4 hours. The powder was synthesized faster and at a lower reaction temperature than by conventional solid state reaction methods. The resulting powder was used in the fabrication of a coating deposited by atmospheric plasma spray (APS) technology. The microstructure of the coating was analyzed by X-ray diffraction and scanning electron microscopy. Heat treatment was found to fully crystallize the coating, increasing its den-sity. The ionic conductivity of the apatite coating was 0.39 (0.054) mS/cm at 850 (700) ℃, and its activation energy was 0.67 eV. 展开更多
关键词 lanthanum silicate solid oxide fuel cell atmospheric plasma spraying IONICCONDUCTIVITY activation energy
在线阅读 下载PDF
An Isothermal Study of the Electrochemical Performance of Intermediate Temperature Solid Oxide Fuel Cells
5
作者 O. O. Ighodaro K. Scott L. Xing 《Journal of Power and Energy Engineering》 2017年第2期97-122,共26页
A two-dimensional along the channel micro-scale isothermal model of a SOFC is developed and validated against experimental data and other simulated results from literature. The steady state behaviour of the cell was d... A two-dimensional along the channel micro-scale isothermal model of a SOFC is developed and validated against experimental data and other simulated results from literature. The steady state behaviour of the cell was determined by numerical solution of the combined transport, continuity and kinetic equations. An important characteristic of the model is the consideration of the triple phase boundary as a distinct layer. The model is capable of predicting the cell performance including polarisation behaviour and power output. The model is used to study the effect of the support structure, geometric parameters and the effect of operating conditions on cell performance. Several parametric studies include the effect of operating conditions and geometric parameters on cell performance with a view to optimising the cell. The simulation results showed that the anode supported SOFC displayed the best performance with the activation and ohmic overpotentials being responsible for most of the voltage losses in the cell. 展开更多
关键词 ISOTHERMAL OVERPOTENTIAL solid oxide fuel cell ANODE Support
在线阅读 下载PDF
Novel synthesis of stabilized Bi_(1-x-y)Gd_(x)Dy_(y)O_(1.5) solid electrolytes with enhanced conductivity for intermediate temperature solid oxide fuel cells(SOFCs) 被引量:1
6
作者 Ahmed H.Ibrahim Yehia M.Abbas +2 位作者 H.A.Ayoub Marwa H.Ali Mustafa Aldoori 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第10期1903-1911,共9页
Herein,we report the synthesis of a Dy-Gd co-doped cubic phase-stabilized Bi_(2)O_(3) solid electrolyte system via solid-state processing under atmospheric conditions.Doping with Dy^(3+) and Gd^(3+) has been observed ... Herein,we report the synthesis of a Dy-Gd co-doped cubic phase-stabilized Bi_(2)O_(3) solid electrolyte system via solid-state processing under atmospheric conditions.Doping with Dy^(3+) and Gd^(3+) has been observed to significantly enhance the densification process during sintering for stabilization purposes,thereby improving the electrical properties of δ-Bi_(2)O_(3)-type polymorphs.The synthesized ceramics were characterized using X-ray diffraction(XRD),field emission scanning electron microscopy-energy dispersive X-ray spectroscopy(FESEM-EDX),thermal gravimetry/differential thermal analysis(TG/DTA),and the four-point probe technique(4PPT).XRD analysis reveals that the samples Bi_(1-x-y)Gd_(x)Dy_(y)O_(1.5)(y=0.05/x=0.05,0.10,0,15,and 0.20,and x=0.05/y=0.10,0.15,and 0.20) exhibit a stable face-centered cubic δ-phase and a mixed-phase crystallographic structure.The XRD analysis of the stabilized δ-phase suggests that the prepared oxides show a face-centered cubic(FCC) structure with a space group of Fm-3m.FESEM micrographs reveal that the composition Bi_(0.90)Gd_(0.05)Dy_(0.05)O_(1.5) has no significant holes.Nevertheless,an evident increase in the pore formation is observed as the amount of Gd_(2)O_(3) increases until it reaches 20%.This finding suggests that dense pellets are formed during the sintering process at 900-1000℃.The DTA analyses were performed to verify the phase stability,which agrees with the XRD results.The electrochemical performance of the synthesized Dy-Gd co-doped Bi_(2)O_(3)solid electrolyte system was evaluated and analyzed in detail by using the electrochemical impedance spectroscopy(EIS) technique,Based on EIS and conductivity measurements,Bi_(0.75)Gd_(0.20)Dy_(0.05)O_(1.5) exhibits the lowest activation energy of 0.519 eV and the highest conductivity value of 0.398 S/cm at 627℃compared to the other samples;this composition can be used as a solid electrolyte for intermediatetemperature solid oxide fuel cells(SOFCs). 展开更多
关键词 solid oxide fuel cells(SOFCs) Rare earths solid-state processing RIETVELD Fast Fourier transform(FFT) Electrochemical impedance spectroscopy(EIS)
原文传递
Investigation and optimization of high-valent Ta-doped SrFeO_(3-δ)as air electrode for intermediate-temperature solid oxide fuel cells
7
作者 Shanshan Jiang Hao Qiu +7 位作者 Shaohua Xu Xiaomin Xu Jingjing Jiang Beibei Xiao Paulo Sérgio Barros Juliao) Chao Su Daifen Chen Wei Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2102-2109,共8页
To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_... To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_(3-δ),STF)is investigated and optimized.The effects of Ta^(5+)doping on structure,transition metal reduction,oxygen nonstoichiometry,thermal expansion,and electrical performance are evaluated systematically.Via 10mol%Ta^(5+)doping,the thermal expansion coefficient(TEC)decreased from 34.1×10^(-6)(SrFeO_(3-δ))to 14.6×10^(-6) K^(-1)(STF),which is near the TEC of electrolyte(13.3×10^(-6) K^(-1) for Sm_(0.2)Ce_(0.8)O_(1.9),SDC),indicates excellent thermomechanical compatibility.At 550-750℃,STF shows superior oxygen vacancy concentrations(0.262 to 0.331),which is critical in the oxygen-reduction reaction(ORR).Oxygen temperature-programmed desorption(O_(2)-TPD)indicated the thermal reduction onset temperature of iron ion is around 420℃,which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves.At 600℃,the STF electrode shows area-specific resistance(ASR)of 0.152Ω·cm^(2) and peak power density(PPD)of 749 mW·cm^(-2).ORR activity of STF was further improved by introducing 30wt%Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)powder,STF+SDC composite cathode achieving outstanding ASR value of 0.115Ω·cm2 at 600℃,even comparable with benchmark cobalt-containing cathode,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF).Distribution of relaxation time(DRT)analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode.At 650℃,STF+SDC composite cathode achieving an outstanding PPD of 1117 mW·cm^(-2).The excellent results suggest that STF and STF+SDC are promising air electrodes for IT-SOFCs. 展开更多
关键词 strontium ferrite-based perovskite Ta doping composite cathode intermediate-temperature solid oxide fuel cells
在线阅读 下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
8
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
在线阅读 下载PDF
Evaluation on Properties of CaO-BaO-B_2O_3-Al_2O_3-SiO_2 Glass-Ceramic Sealants for Intermediate Temperature Solid Oxide Fuel Cells 被引量:11
9
作者 Fatemeh Heydari Amir Maghsoudipour +1 位作者 Zohreh Hamnabard Sajad Farhangdoust 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第1期49-54,共6页
To develop suitable sealants for intermediate temperature solid oxide fuel cells (IT-SOFC), glass-ceramics based on the CaO-BaO-B203-AI203-Si02 system were studied. Coefficient of thermal expansion (CTE), glass tr... To develop suitable sealants for intermediate temperature solid oxide fuel cells (IT-SOFC), glass-ceramics based on the CaO-BaO-B203-AI203-Si02 system were studied. Coefficient of thermal expansion (CTE), glass transition temperature (Tg) and dilatometric softening point temperature (Td) of specimens were determined by means of dilatometer analysis and crystallization temperature was measured by differential thermal analysis (DTA). Also, crystallization behavior during prolonged heat-treatment and microstructure properties were studied by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Electrical properties were measured at different temperatures, and the results showed a high resistance (〉104 Ω) at the SOFC operation temperature (600-800 ℃). Moreover, mechanical properties of heat-treated specimens (1, 10, 30, 50 h) were measured, Microstructure investigation revealed a well-adhered bonding between the sealant glass-ceramic electrolyte and glass. 展开更多
关键词 Glass solid oxide fuel cells (SOFC) Thermal expansion Mechanical properties Electrical properties
原文传递
Pervoskite-type Bao.sSro.sAl0.1Fe0.9O3-δ as Intermediate-Temperature Solid Oxide Fuel Cell Cathode 被引量:1
10
作者 Yun Gan Kui Xie 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期605-608,I0004,共5页
A cobalt-free perovskite-type Ba0.5Sr0.5A10.1Fe0.9O3-δ (BSAF) chemically studied as solid oxide fuel cell (SOFC) cathode. The ductivity, and electrode polarizations in symmetrical cell based is developed and elec... A cobalt-free perovskite-type Ba0.5Sr0.5A10.1Fe0.9O3-δ (BSAF) chemically studied as solid oxide fuel cell (SOFC) cathode. The ductivity, and electrode polarizations in symmetrical cell based is developed and electro- structures, electrical con- on mixed ion conducting electrolyte were investigated, respectively. The temperature dependence of conductivity of BSAF in air shows a typical semiconductor behavior with positive temperature coefficient up to 450℃ where the conductivity reaches 14.0 S/cm while above this temperature the negative temperature coefficient dominates the total conductivity. Electrochemical charac- terizations show desirable polarization resistance of BSAF cathode in a symmetric cell based on mixed ion conducting electrolyte at 650-700℃, A single SOFC with BSAF cathode shows OCV of 1.0 V and maximum output of 420 mW/cm2 at 700 ℃ with humidified hydrogen fuel and static air oxidant. 展开更多
关键词 solid oxide fuel cell PEROVSKITE CATHODE Cobalt-free Mixed ionic conductor
在线阅读 下载PDF
Radio-frequency magnetron sputtered thin-film La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ) perovskite electrodes for intermediate temperature symmetric solid oxide fuel cell(IT-SSOFC) 被引量:1
11
作者 Vicky Dhongde Aditya Singh +3 位作者 Jyotsana Kal Uzma Anjum M.Ali Haider Suddhasatwa Basu 《Materials Reports(Energy)》 2022年第2期75-85,共11页
The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCN... The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCNO electrodes were prepared to study the oxygen reduction reaction at intermediate temperature.The Rietveld refinement of syn-thesized material shows a hexagonal structure with the R-3c space group of the prepared perovskite material.Lattice parameter and fractional coordinates were utilized to calculate the oxygen ion diffusion coefficient for molecular dynamic simulation.At 973 K,the oxygen ion diffusion of LSCNO was 1.407×10^(-8)cm^(2)s^(-1) higher by order of one magnitude than that of the La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(7.751×10^(-9)cm^(2)^(-1)).The results suggest that the Nb doping provide the structural stability which improves oxygen anion diffusion.The enhanced structural stability was analysed by the thermal expansion coefficient calculated experimentally and from molecular dynamics simulations.Furthermore,the density functional theory calculation revealed the role of Nb dopant for oxygen vacancy formation energy at Sr-0 and La-O planes is lower than the undoped structure.To understand the rate-limiting process for sluggish oxygen diffusion kinetics,80 nm and 40 nm thin films were fabricated using radio frequency magnetron sputtering on gadolinium doped ceria electrolyte substrate.The impedance was observed to increase with an increasing thickness,suggesting the bulk diffusion as a rate-limiting step for oxygen ion diffu-sion.The electrochemical performance was analysed for the thin-flm symmetric solid oxide fuel cell,which achieved a peak power density of 390 mW cm^(-2) at 1.02 V in the presence of H_(2) fuel on the anode side and air on the cathode side. 展开更多
关键词 Symmetric solid oxide fuel cell Thin-film electrode Diffusion coefficient Molecular dynamics Radio-frequency magnetron sputtering intermediate temperature
在线阅读 下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:2
12
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
在线阅读 下载PDF
From concept to commercialization:A review of tubular solid oxide fuel cell technology 被引量:1
13
作者 Ruyan Chen Yuan Gao +4 位作者 Jiutao Gao Huiyu Zhang Martin Motola Muhammad Bilal Hanif Cheng-Xin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期79-109,I0003,共32页
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st... The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed. 展开更多
关键词 Tubular solid oxide fuel cell Support material Geometric structure Preparation methods STACK
在线阅读 下载PDF
Composite Cathode Bi_(1.14)Sr_(0.43)O_(2.14)-Ag for Intermediate-temperature Solid Oxide Fuel Cells
14
作者 高展 张萍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期350-353,共4页
Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There w... Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 ℃ is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm^2 at 700℃ and 0.29 Ωcm^2 at 650℃. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs. 展开更多
关键词 solid oxide fuel cells (SOFCs) composite cathode strontium stabilized bismuth oxide (SSB) samaria doped ceria (SDC)
在线阅读 下载PDF
Interface engineering of an electrospun nanofiber-based composite cathode for intermediate-temperature solid oxide fuel cells
15
作者 Seo Ju Kim Deokyoon Woo +3 位作者 Donguk Kim Tae Kyeong Lee Jaeyeob Lee Wonyoung Lee 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期345-353,共9页
Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface bet... Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface between the cathode and electrolyte is important for facilitating ORR kinetics and hence improving the electrochemical performance.We developed the yttria-stabilized zirconia(YSZ)nanofiber(NF)-based composite cathode,where the oxygen vacancy concentration is controlled by varying the dopant cation(Y2O3)ratio in the YSZ NFs.The composite cathode with the optimized oxygen vacancy concentration exhibits maximum power densities of 2.66 and 1.51 W cm^(−2)at 700 and 600℃,respectively,with excellent thermal stability at 700℃ over 500 h under 1.0 A cm^(−2).Electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed that the high oxygen vacancy concentration in the NF-based scaffold facilitates the charge transfer and incorporation reaction occurred at the interfaces between the cathode and electrolyte.Our results demonstrate the high feasibility and potential of interface engineering for achieving IT-SOFCs with higher performance and stability. 展开更多
关键词 solid oxide fuel cells NANOFIBER INFILTRATION oxygen reduction reactions oxygen vacancy
在线阅读 下载PDF
Barium-doped Pr_(2)Ni_(0.6)Cu_(0.4)O_(4+δ) with triple conducting characteristics as cathode for intermediate temperature proton conducting solid oxide fuel cell
16
作者 Chengyi Ai Tingting Li +5 位作者 Rongzheng Ren Zhenhua Wang Wang Sun Jinsheng Feng Kening Sun Jinshuo Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期269-276,共8页
Proton conducting solid oxide fuel cell(H-SOFC)is an emerging energy conversion device,with lower activation energy and higher energy utilization efficiency.However,the deficiency of highly active cathode materials st... Proton conducting solid oxide fuel cell(H-SOFC)is an emerging energy conversion device,with lower activation energy and higher energy utilization efficiency.However,the deficiency of highly active cathode materials still remains a major challenge for the development of H-SOFC.Therefore,in this work,K_(2)NiF_(4)-type cathode materials Pr_(2-x)Ba_(x)Ni_(0.6)Cu_(0.4)O_(4+δ)(x=0,0.1,0.2,0.3),single-phase tripleconducting(e-/O^(2-)/H^(+))oxides,are prepared for intermediate temperature H-SOFCs and exhibit good oxygen reduction reaction activity.The investigation demonstrates that doping Ba into Pr_(2-x)BaxNi_(0.6)Cu_(0.4)O_(4+δ) can increase its electrochemical performance through enhancing electrical conductivity,oxygen vacancy concentration and proton conductivity.EIS tests are carried at 750℃ and the minimum polarization impedances are obtained when x=0.2,which are 0.068 Ω·cm^(2) in air and 1.336 Ω·cm^(2) in wet argon,respectively.The peak power density of the cell with Pr_(1.8)Ba_(0.2)Ni_(0.6)Cu_(0.4)O_(4+δ) cathode is 298 mW·cm^(-2) at 750℃ in air with humidified hydrogen as fuel.Based on the above results,Ba-doped Pr_(2-x)Ba_(x)Ni_(0.6)Cu_(0.4)O_(4+δ) can be a good candidate material for SOFC cathode applications. 展开更多
关键词 Protonic conducting solid oxide fuel cells Cathode materials Element substitution
在线阅读 下载PDF
Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process
17
作者 Shixue Liu Zhijing Liu +1 位作者 Shuxing Zhang Hao Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期405-411,共7页
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b... For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening. 展开更多
关键词 solid oxide fuel cell anode degradation focused ion beam-scanning electron microscopy lattice Boltzmann method
在线阅读 下载PDF
Recovery of Solid Oxide Fuel CellWaste Heat by Thermoelectric Generators and AlkaliMetal Thermoelectric Converters
18
作者 Wenxia Zhu Baishu Chen +1 位作者 Lexin Wang Chunxiang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1559-1573,共15页
A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide ... A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat. 展开更多
关键词 Alkali metal thermoelectric converters waste heat thermoelectric generators solid oxide fuel cell
在线阅读 下载PDF
Superionic Conductivity in Ceria‑Based Heterostructure Composites for Low‑Temperature Solid Oxide Fuel Cells 被引量:2
19
作者 Yifei Zhang Jingjing Liu +7 位作者 Manish Singh Enyi Hu Zheng Jiang Rizwan Raza Faze Wang Jun Wang Fan Yang Bin Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期264-283,共20页
Ceria-based heterostructure composite(CHC)has become a new stream to develop advanced low-temperature(300–600°C)solid oxide fuel cells(LTSOFCs)with excellent power outputs at 1000 mW cm−2 level.The state-ofthe-a... Ceria-based heterostructure composite(CHC)has become a new stream to develop advanced low-temperature(300–600°C)solid oxide fuel cells(LTSOFCs)with excellent power outputs at 1000 mW cm−2 level.The state-ofthe-art ceria–carbonate or ceria–semiconductor heterostructure composites have made the CHC systems significantly contribute to both fundamental and applied science researches of LTSOFCs;however,a deep scientific understanding to achieve excellent fuel cell performance and high superionic conduction is still missing,which may hinder its wide application and commercialization.This review aims to establish a new fundamental strategy for superionic conduction of the CHC materials and relevant LTSOFCs.This involves energy band and built-in-field assisting superionic conduction,highlighting coupling effect among the ionic transfer,band structure and alignment impact.Furthermore,theories of ceria–carbonate,e.g.,space charge and multi-ion conduction,as well as new scientific understanding are discussed and presented for functional CHC materials. 展开更多
关键词 Ceria-based heterostructure composite Ceria–semiconductor Energy band Built-in field solid oxide fuel cell
在线阅读 下载PDF
Low Temperature Preparation of Ceria Solid Solutions Doubly Doped with Rare-Earth and Alkali-Earth and Their Properties as Solid Oxide Fuel Cells 被引量:1
20
作者 任引哲 蒋凯 +2 位作者 王海霞 孟健 苏锵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第4期461-465,共5页
A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite... A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 ℃. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria based solid electrolyte is improved. The effects of rare earth and alkali earth ions on the electricity were discussed. The open circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce 0.8 Sm 0.2 ) 1-0.05 Ca 0.05 O 2- δ as electrolyte are 0.86 V and 33 mW·cm -2 , respectively. 展开更多
关键词 CERIA solid electrolyte amorphous citrate gel method impedance spectra solid oxide fuel cell rare earths
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部