Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resoluti...Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.展开更多
A hidden Markov model(HMM)comprises a state with Markovian dynamics that can only be observed via noisy sensors.This paper considers three problems connected to HMMs,namely,inverse filtering,belief estimation from act...A hidden Markov model(HMM)comprises a state with Markovian dynamics that can only be observed via noisy sensors.This paper considers three problems connected to HMMs,namely,inverse filtering,belief estimation from actions,and privacy enforcement in such a context.First,the authors discuss how HMM parameters and sensor measurements can be reconstructed from posterior distributions of an HMM filter.Next,the authors consider a rational decision-maker that forms a private belief(posterior distribution)on the state of the world by filtering private information.The authors show how to estimate such posterior distributions from observed optimal actions taken by the agent.In the setting of adversarial systems,the authors finally show how the decision-maker can protect its private belief by confusing the adversary using slightly sub-optimal actions.Applications range from financial portfolio investments to life science decision systems.展开更多
Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t...Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.展开更多
This paper introduces IAFs (inverse active filters) employing CCIIs (second generation current conveyors) and groundedpassive components. The IAFs enable ILP (inverse low-pass), IBP (inverse band-pass) and IHP...This paper introduces IAFs (inverse active filters) employing CCIIs (second generation current conveyors) and groundedpassive components. The IAFs enable ILP (inverse low-pass), IBP (inverse band-pass) and IHP (inverse high-pass) characteristics byadding the circuit currents. Additionally, the circuit parameters ω0 and Q can be set orthogonally adjusting the circuit components.The achievement example is given together with simulation results by PSPICE.展开更多
In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new exp...In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.展开更多
Using a gravity anomaly covariance function based on the second-order Ganssian Markov gravity anomaly potential model, the state equation of a gravity anomaly signal is obtained in marine gravimetry. Combined with the...Using a gravity anomaly covariance function based on the second-order Ganssian Markov gravity anomaly potential model, the state equation of a gravity anomaly signal is obtained in marine gravimetry. Combined with the system state equation and the measurement equation, a new method of the cascade Kalman filter is proposed and applied to the correction of gravity anomaly distortion. In the signal processing procedure, an inverse Kalman filter is used to restore the gravity anomaly signal and high frequency noises first. Then an adaptive Kalman filter, which uses the gravity anomaly state equation as the system equation, is set to estimate the actual gravity anomaly data. Emulations and experiments indicate that both the cascade Kalman filter method and the single inverse Kalman filter method are effective in alleviating the distortion of the gravity anomaly signal, but the performance of the cascade Kalman filter method is better than that of the single inverse Kalman filter method.展开更多
Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence ...Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography(OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image.Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.展开更多
Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders t...Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering.展开更多
Seismic processing characterizing thickness and borders of thin inter-beds has gradually evolved fi'om post-stack migration to pre-stack migration, and the latter considers both vertical and lateral resolutions. As t...Seismic processing characterizing thickness and borders of thin inter-beds has gradually evolved fi'om post-stack migration to pre-stack migration, and the latter considers both vertical and lateral resolutions. As the key processing methods for improving vertical and lateral resolution, conventional deconvolution and pre-stack time migration (PSTM) are not simply dominated by the estimation and compression of the wavelet because of its instability. Therefbre, considering the variations of wavelet frequency belbre, during and alter PSTM can obtain good common reflection point (CRP) gathers and imaging profiles of thin inter-beds. Based on the frequency characteristics of the wavelet before, during and after PSTM, a joint high-resolution processing method for thin inter-beds is proposed in this paper, including inverse Q filtering for high-frequency compensation before PSTM, optimum weighting Kirchhoff PSTM for preserving high-frequencies during PSTM, and wavelet harmonizer deconvolution tier consistent processing and frequency-band broadening after PSTM. An application to real data characterized by mudstone beds in the Oriente Basin proved that the joint high-resolution processing method is effective for determining the thickness and borders of thin inter-beds and is favorable for subsequent reservoir prediction and seismic inversions.展开更多
High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. ...High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. In this paper, first, based on Wiener filter theory, inverse filter calculations for near-surface absorption attenuation compensation were accomplished by analysis of the direct wave spectral components from different distances near the surface. The direct waves were generated by detonators in uphole shots and were acquired by receivers on the surface. The spatially varying inverse filters were designed to compensate for the frequency attenuation of 3D pre-stack CRG (common receiver-gather) data. After applying the filter to CRG data, the high frequency components were compensated with the low frequencies maintained. The seismic resolution and S/N ratio are enhanced and match better with synthetic seismograms and better meet the needs of geological interpretation.展开更多
The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small u...The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small uncertainty in the measurement will came large deviation in reconstncted signals. The amplified noise has to be suppressed at the sacrifice of biasing in estimation. The paper presents a kind of designing method of inverse filter in frequency domain based on stabilized solutions of Fredholm integral equations of the fast kind in order to reduce dynamic errors. Compared with previous several work, the method has advantage of generalization. Simulations with different Signal-to-Noise ratio (SNR) are investigated. Flexibility of the method is verified. Application of correcting dynamic error is given.展开更多
A simple data assimilation method for improving estimation of moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) time-series data products based on the gradient inverse weighted filter and...A simple data assimilation method for improving estimation of moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) time-series data products based on the gradient inverse weighted filter and object analysis is proposed. The properties and quality control (QC) of MODIS LAI data products are introduced. Also, the gradient inverse weighted filter and object analysis are analyzed. An experiment based on the simple data assimilation method is performed using MODIS LAI data sets from 2000 to 2005 of Guizhou Province in China.展开更多
Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UC...Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.展开更多
基金supported by the 863 Program(Grant No.2007AA06Z218)
文摘Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.
基金the Wallenberg AIAutonomous Systems and Software Program(WASP)the Swedish Research Council and the Swedish Research Council Research Environment NewLEADS under contract 2016-06079。
文摘A hidden Markov model(HMM)comprises a state with Markovian dynamics that can only be observed via noisy sensors.This paper considers three problems connected to HMMs,namely,inverse filtering,belief estimation from actions,and privacy enforcement in such a context.First,the authors discuss how HMM parameters and sensor measurements can be reconstructed from posterior distributions of an HMM filter.Next,the authors consider a rational decision-maker that forms a private belief(posterior distribution)on the state of the world by filtering private information.The authors show how to estimate such posterior distributions from observed optimal actions taken by the agent.In the setting of adversarial systems,the authors finally show how the decision-maker can protect its private belief by confusing the adversary using slightly sub-optimal actions.Applications range from financial portfolio investments to life science decision systems.
文摘Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.
文摘This paper introduces IAFs (inverse active filters) employing CCIIs (second generation current conveyors) and groundedpassive components. The IAFs enable ILP (inverse low-pass), IBP (inverse band-pass) and IHP (inverse high-pass) characteristics byadding the circuit currents. Additionally, the circuit parameters ω0 and Q can be set orthogonally adjusting the circuit components.The achievement example is given together with simulation results by PSPICE.
基金sponsored by the National Nature Science Foundation of China(Nos.41174114 and 41274128)
文摘In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.
基金Pre-Research Program of General Armament Departmentduring the 11th Five-Year Plan Period(No.51309010201)the National Natural Science Foundation of China(No.60575010)
文摘Using a gravity anomaly covariance function based on the second-order Ganssian Markov gravity anomaly potential model, the state equation of a gravity anomaly signal is obtained in marine gravimetry. Combined with the system state equation and the measurement equation, a new method of the cascade Kalman filter is proposed and applied to the correction of gravity anomaly distortion. In the signal processing procedure, an inverse Kalman filter is used to restore the gravity anomaly signal and high frequency noises first. Then an adaptive Kalman filter, which uses the gravity anomaly state equation as the system equation, is set to estimate the actual gravity anomaly data. Emulations and experiments indicate that both the cascade Kalman filter method and the single inverse Kalman filter method are effective in alleviating the distortion of the gravity anomaly signal, but the performance of the cascade Kalman filter method is better than that of the single inverse Kalman filter method.
基金Supported by National Key Research and Development Program of China(2016YFF0201005)。
文摘Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography(OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image.Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.
基金supported by National 863 Program of China(Grant No.2006AA09A101-0102)
文摘Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering.
文摘Seismic processing characterizing thickness and borders of thin inter-beds has gradually evolved fi'om post-stack migration to pre-stack migration, and the latter considers both vertical and lateral resolutions. As the key processing methods for improving vertical and lateral resolution, conventional deconvolution and pre-stack time migration (PSTM) are not simply dominated by the estimation and compression of the wavelet because of its instability. Therefbre, considering the variations of wavelet frequency belbre, during and alter PSTM can obtain good common reflection point (CRP) gathers and imaging profiles of thin inter-beds. Based on the frequency characteristics of the wavelet before, during and after PSTM, a joint high-resolution processing method for thin inter-beds is proposed in this paper, including inverse Q filtering for high-frequency compensation before PSTM, optimum weighting Kirchhoff PSTM for preserving high-frequencies during PSTM, and wavelet harmonizer deconvolution tier consistent processing and frequency-band broadening after PSTM. An application to real data characterized by mudstone beds in the Oriente Basin proved that the joint high-resolution processing method is effective for determining the thickness and borders of thin inter-beds and is favorable for subsequent reservoir prediction and seismic inversions.
基金supported by China Petroleum Technology Innovation Fund Project(Grant No.0610740122)
文摘High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. In this paper, first, based on Wiener filter theory, inverse filter calculations for near-surface absorption attenuation compensation were accomplished by analysis of the direct wave spectral components from different distances near the surface. The direct waves were generated by detonators in uphole shots and were acquired by receivers on the surface. The spatially varying inverse filters were designed to compensate for the frequency attenuation of 3D pre-stack CRG (common receiver-gather) data. After applying the filter to CRG data, the high frequency components were compensated with the low frequencies maintained. The seismic resolution and S/N ratio are enhanced and match better with synthetic seismograms and better meet the needs of geological interpretation.
基金The paper is sponsored by National Natural Science Foundation of China(No.50675211)Natural Science Foundation(No.2009011023)Returned Overseas Graduates Foundation(No.2008067) of Shanxi Provincein China
文摘The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small uncertainty in the measurement will came large deviation in reconstncted signals. The amplified noise has to be suppressed at the sacrifice of biasing in estimation. The paper presents a kind of designing method of inverse filter in frequency domain based on stabilized solutions of Fredholm integral equations of the fast kind in order to reduce dynamic errors. Compared with previous several work, the method has advantage of generalization. Simulations with different Signal-to-Noise ratio (SNR) are investigated. Flexibility of the method is verified. Application of correcting dynamic error is given.
基金This work was supported by the China Postdoctoral Science Foundation(No.20060390326)the key international S&T cooperation project of China(No.2004DFA06300).
文摘A simple data assimilation method for improving estimation of moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) time-series data products based on the gradient inverse weighted filter and object analysis is proposed. The properties and quality control (QC) of MODIS LAI data products are introduced. Also, the gradient inverse weighted filter and object analysis are analyzed. An experiment based on the simple data assimilation method is performed using MODIS LAI data sets from 2000 to 2005 of Guizhou Province in China.
基金supported by the Basic Research Funds for the Central Universities (Grant No. 2652015116)the National Natural Science Foundation of China (Grant Nos. 51209187, 41530316 & 91125024)+1 种基金the National Key Research and Development Program of China (Grant No. 2016YFC0402805)the Beijing Higher Education Young Elite Teacher Project (Grant No. YETP0653)
文摘Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.