Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but i...With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but ischemic brain tissues still face ischemia-reperfusion injury after recanalization. Nowadays, effective neurological protective agents still cannot completely resist the multiple damages of ischemia-reperfusion injury. As an iron-dependent mode of programmed cell death, ferroptosis occupies an important position in ischemia-reperfusion injury. Selenium plays a unique protective role in ischemia-reperfusion injury as an active site element in the center of glutathione peroxidase. Therefore, the study mainly aims to review the protective role of selenium in IS and the related mechanisms, as well as the effect of selenium on the risk factors of IS.展开更多
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre...Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.展开更多
Introduction: Renal ischemia-reperfusion (IR) is responsible for injuries such as destruction or dysfunction of tubular epithelial cells with inflammatory reaction and oxidative stress. Several therapeutic methods hav...Introduction: Renal ischemia-reperfusion (IR) is responsible for injuries such as destruction or dysfunction of tubular epithelial cells with inflammatory reaction and oxidative stress. Several therapeutic methods have been tested to alleviate ischemia-perfusion injury, ranging from using anti-inflammatory drugs, antioxidants, and plants from traditional pharmacopeia to administering RNA interference. However, there is currently no effective therapeutic option available for the treatment of renal IR injury, other than supportive therapies such as renal replacement therapy or hydration. Objective: This present study aimed to evaluate the effect of Guiera senegalensis on renal ischemia reperfusion, a recognized plant for its antioxidant and anti-inflammatory properties. Materials and Methods: Twenty-four (24) adult male Wistar rats were divided into four following groups: SLAM (subjected to a median laparotomy with simulated ischemia);GUIERRA (animals that received 250 mg/kg of guierra senegalensis orally, once a day, for 5 days, with simulated renal ischemia);IR (animals that underwent laparotomy followed by clamping of bilateral renal pedicles for 45 min and followed by reperfusion);GUIERRA + IR (animals given GUIERRA at the dosage of 250 mg/kg per day, for 5 days and then subjected to renal ischemia-reperfusion). Data analysis was performed by ANOVA, and a significance level of p Results: Compared with the I/R group, rats in the GUIERRA + IR group showed reduced histopathological damage scores (p Conclusion: The results of this preliminary work suggest that Guiera senegalensis decreases the degree of tissue damage in renal ischemia-reperfusion cases. This plant seems to be a promising therapeutic;further studies could help to precise the targets of its compounds on ischemia-reperfusion pathways.展开更多
Increasing evidence of the significant clinical value of protection against ischemia/reperfusion injury has contributed to the realization of the independent importance of this approach in improving prognosis and redu...Increasing evidence of the significant clinical value of protection against ischemia/reperfusion injury has contributed to the realization of the independent importance of this approach in improving prognosis and reducing cardiovascular mortality.Extracellular vesicles(EVs)derived by adipose mesenchymal stem cells may mediate the paracrine effects of stem cells and provide regenerative and anti-inflammatory properties,which are enhanced byγ-aminobutyric acid.The protective effects on cardiac myocytes may result from the EV embarked by miR-21-5p,which is a target for thioredoxin-interacting protein,regulating the formation of thioredoxin-interacting protein-thioredoxin complexes and subsequently enhancing the antioxidant activity of thioredoxin.It has been found thatγ-aminobutyric acid governs myocardial bioenergetics through suppressing inflammation and supporting mitochondrial structure.Finally,stem cell-based cell-free therapy based on adipose-derived stem cell EVs is considered a promising approach to individualized management of ischemia-induced cardiomyopathy.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of...Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.展开更多
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a...AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease.展开更多
Subjective: This study aimed to investigate the therapeutic mechanisms of 7-hydroxyflavone (7-HF) in treating myocardial ischemia/reperfusion injury (MI/RI) via network pharmacology, molecular docking, target validati...Subjective: This study aimed to investigate the therapeutic mechanisms of 7-hydroxyflavone (7-HF) in treating myocardial ischemia/reperfusion injury (MI/RI) via network pharmacology, molecular docking, target validation, and experiments at the animal level. Methods: Firstly, the genes of 7-HF were acquired from PharmMapper, TCMSP, and SwissTargetPrediction. At the same time, MI/RI-related genes were obtained from OMIM, GeneCards, and TTD online platforms. Subsequently, string platform and Cytoscape 3.9.2 were used to construct protein-protein interaction network diagrams and 7-HF-targets-signaling pathways-MI/RI network. Then, the Metascape platform was used to conduct functional enrichment analyses. Next, AutoDock Vina and Pymol were used to perform molecular docking. The hub targets were validated in the GSE66360. Lastly, SOD, MDA, transmission electron microscope, quantitative real-time PCR, and western blot were used to validate in MI/RI rats. Results: 139 genes of 7-HF, 4832 genes of MI/RI were obtained. The 47 interact genes between 7-HF and MI/RI targets for MI/RI were likely to act through multiple pathways. And NQO1 was a critical target in the above process. In an animal experiment, 7-HF could relieve the injured interfibrillar mitochondria and myocardial fibers, decrease the expression of MDA and SOD, and increase the expression of Nrf2, NQO1 and HO-1 in the mRNA and protein level in the MI/RI rats. Conclusion: This study preliminarily demonstrated that 7-HF could provide cardioprotection by inhibiting the oxidative stress and up-regulating Nrf2/NQO1/HO-1 signaling pathway based on network pharmacology, molecular docking, target validation, and animal experiments.展开更多
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ...Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury.展开更多
Ischemia/reperfusion(I/R)injury ismarked by the restriction and subsequent restoration of blood supply to an organ.This process can exacerbate the initial tissue damage,leading to further disorders,disability,and even...Ischemia/reperfusion(I/R)injury ismarked by the restriction and subsequent restoration of blood supply to an organ.This process can exacerbate the initial tissue damage,leading to further disorders,disability,and even death.Extracellular vesicles(EVs)are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells.The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy.The therapeutic potential of EVs derived from stem cells,endothelial cells,and plasma in I/R injury has been actively investigated.Therefore,this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs.We noted that EVs serve as nontoxic,flexible,and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression.The therapeutic efficacy of EVs can be enhanced through various engineering strategies.Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies.Finally,we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance.This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.展开更多
AIM To evaluale the potential role of P-selectinand anti-P-selectin monoclonal antibody(mAb)in apoptosis during hepatic/renal ischemia-reperfusion injury.METHODS Plasma P-selectin level,hepatic/renal P-selectin expres...AIM To evaluale the potential role of P-selectinand anti-P-selectin monoclonal antibody(mAb)in apoptosis during hepatic/renal ischemia-reperfusion injury.METHODS Plasma P-selectin level,hepatic/renal P-selectin expression and cell apoptosiswere detected in rat model of hepatic/ renalischemia-reperfusion injury.ELISA,immunohist-ochemistry and TUNEL were used.Someischemia-reperfusion rats were treated with anti-P-selectin mAb.RESULTS Hepatic/renal function insuffic-iency,up-regulated expression of P-selectin inplasma and hepatic/renal tissue,hepatic/renalhistopathological damages and cell apoptosiswere found in rats with hepatic/renal ischemia-reperfusion injury,while these changes becameless conspicuous in animals treated with anti-P-selectin mAb.CONCLUSION P-selectin might mediateneutrophil infiltration and cell apoptosis andcontribute to hepatic/renal ischemia-reperfusioninjury,anti-P-selectin mAb might be an efficientapproach for the prevention and treatment ofhepatic/renal ischemia-reperfusion injury.展开更多
In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion in...In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/ reperfusion injury, levels of the inflammation-related factors E-selectin and myeloperoxidase were upregulated, the oxidative stress-related marker malondialdehyde was increased, and super- oxide dismutase activity was decreased in the ischemic cerebral cortex. Atorvastatin pretreatment significantly inhibited these changes. Our findings indicate that atorvastatin protects against ce-rebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects.展开更多
AIM:To examine whether heme oxygenase (HO)-1 overexpression would exert direct or indirect effects on Kupffer cells activation, which lead to aggravation of reperfusion injury.METHODS: Donors were pretreated with coba...AIM:To examine whether heme oxygenase (HO)-1 overexpression would exert direct or indirect effects on Kupffer cells activation, which lead to aggravation of reperfusion injury.METHODS: Donors were pretreated with cobalt protoporphyrin (CoPP) or zinc protoporphyrin (ZnPP), HO-1 inducer and antagonist, respectively. Livers were stored at 4℃ for 24 h before transplantation. Kupffer cells were isolated and cultured for 6 h after liver reperfusion.RESULTS: Postoperatively, serum transaminases were significantly lower and associated with less liver injury when donors were pretreated with CoPP, as compared with the ZnPP group. Production of the cytokines tumor necrosis factor-α and interleukin-6 generated by Kupffer cells decreased in the CoPP group. The CD14 expression levels (RT-PCR/Western blots) of Kupffer cells from CoPP-pretreated liver grafts reduced.CONCLUSION: The study suggests that the potential utility of HO-1 overexpression in preventing ischemia/reperfusion injury results from inhibition of Kupffer cells activation.展开更多
Objective:To explore protective effect of rosiglitazone on myocardial ischemia reperfusion injury.Methods:A total of 48 male SD rats were randomly divided into control group(A),I/R group(B),high dose of rosiglitazone(...Objective:To explore protective effect of rosiglitazone on myocardial ischemia reperfusion injury.Methods:A total of 48 male SD rats were randomly divided into control group(A),I/R group(B),high dose of rosiglitazone(C),low dose of rosiglitazone(D).Plasm concentration of creatine kinase(CK),CK-MB,hsCRP,Superoxide dismutase(SOD),malondialdehyde(MDA),glutathione peroxidase(GSH-Px),nitric oxide(NO)and endothelin(ET)were measured 1 h later after I/R.24 h after I/R hearts were harvested to observe pathological and ultrastructural changes.Immunohistochemistry and western blotting was used to test CD40 expression in myocardial tissue.Area of myocardial infarction were tested,arrhythmia rate during I/R was recorded.Results:Plasm concentration of creatine kinase(CK),CK-MB,hsCRP,NO,MDA and ET were decreased in group C,D compared with group B.Plasm concentration of T-SOD and GSHPx was increased significantly in group C,D compared with group B.Compared with group B,pathological and ultrastructural changes in group C,D were slightly.Myocardial infarction area and arrhythmia rate were lower in group C,D compare with group B.Conclusions:Rosiglitazone can protect myocardium from I/R injury by enhancing T-SOD and GSH-Px concentration,inhibit inflammatory reaction,improve endothelial function,reduce oxidative stress and calcium overload.展开更多
Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke,and avoids the complications of general hypothermia.However,the mechanisms by which selective brain hypothermia affects...Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke,and avoids the complications of general hypothermia.However,the mechanisms by which selective brain hypothermia affects mitochondrial fission remain unknown.In this study,we investigated the effect of selective brain hypothermia on the expression of fission 1 (Fis1) protein,a key factor in the mitochondrial fission system,during focal cerebral ischemia/reperfusion injury.Sprague-Dawley rats were divided into four groups.In the sham group,the carotid arteries were exposed only.In the other three groups,middle cerebral artery occlusion was performed using the intraluminal filament technique.After 2 hours of occlusion,the filament was slowly removed to allow blood reperfusion in the ischemia/reperfusion group.Saline,at 4℃ and 37℃,were perfused through the carotid artery in the hypothermia and normothermia groups,respectively,followed by restoration of blood flow.Neurological function was assessed with the Zea Longa 5-point scoring method.Cerebral infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining,and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining.Fis1 and cytosolic cytochrome c levels were assessed by western blot assay.Fis1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction.Mitochondrial ultrastructure was evaluated by transmission electron microscopy.Compared with the sham group,apoptosis,Fis1 protein and mRNA expression and cytosolic cytochrome c levels in the cortical ischemic penumbra and cerebral infarct volume were increased after reperfusion in the other three groups.These changes caused by cerebral ischemia/reperfusion were inhibited in the hypothermia group compared with the normothermia group.These findings show that selective brain hypothermia inhibits Fis1 expression and reduces apoptosis,thereby ameliorating focal cerebral ischemia/reperfusion injury in rats.Experiments were authorized by the Ethics Committee of Qingdao Municipal Hospital of China (approval No.2019008).展开更多
AIM:To investigate the efficacy and molecularmechanisms of induced heme oxygenase(HO)-1 in protecting liver from warm ischemia/reperfusion(I/R)injury.METHODS:Partial warm ischemia was produced in the left and middle h...AIM:To investigate the efficacy and molecularmechanisms of induced heme oxygenase(HO)-1 in protecting liver from warm ischemia/reperfusion(I/R)injury.METHODS:Partial warm ischemia was produced in the left and middle hepatic lobes of SD rats for 75min,followed by 6 h of reperfusion.Rats were treated with saline,cobalt protoporphyrin(Co PP)or zinc protoporphyrin(Zn PP)at 24 h prior to the ischemia insult.Blood and samples of ischemic lobes subjected to ischemia were collected at 6 h after reperfusion.Serum transaminases level,plasma lactate dehydrogenase and myeloperoxidase activity in liver were measured.Liver histological injury and inflammatory cell infiltration were evaluated by tissue section and liver immunohistochemical analysis.We used quantitative reverse transcription polymerase chain reaction to analyze liver expression of inflammatory cytokines and chemokines.The cell lysates were subjected to immunoprecipitation with anti-Toll-IL-1R-containing adaptor inducing interferon-β(TRIF)and anti-myeloid differentiation factor 88(My D88),and then the immunoprecipitates were analyzed by SDS-PAGE and immunoblotted with the indicated antibodies.RESULTS:HO-1 protected livers from I/R injury,as evidenced by diminished liver enzymes and wellpreserved tissue architecture.In comparison with Zn PP livers 6 h after surgery,Co PP treatment livers showed a significant increase inflammatory cell infiltration of lymphocytes,plasma cells,neutrophils and macrophages.The Toll-like receptor(TLR)-4 and TANK binding kinase1 protein levels of rats treated with Co PP significantly reduced in TRIF-immunoprecipitated complex,as compared with Zn PP treatment.In addition,pretreatment with Co PP reduced the expression levels of TLR2,TLR4,IL-1R-associated kinase(IRAK)-1 and tumor necrosis factor receptor-associated factor 6 in My D88-immunoprecipitated complex.The inflammatory cytokines and chemokines m RNA expression rapidly decreased inCo PP-pretreated liver,compared with the Zn PP-treated group.However,the expression of negative regulators Tollinteracting protein,suppressor of cytokine signaling-1,IRAK-M and Src homology 2 domain-containing inositol-5-phosphatase-1 in Co PP treatment rats were markedly up-regulated as compared with Zn PP-treated rats.CONCLUSION:HO-1 protects liver against I/R injury by inhibiting TLR2/TLR4-triggered My D88-and TRIFdependent signaling pathways and increasing expression of negative regulators of TLR signaling in rats.展开更多
Ischemia/reperfusion (I/R) injury of the gut is a significant problem in a variety of clinical settings and is associated with a high morbidity and mortality. Although the mechanisms involved in the pathogenesis of gu...Ischemia/reperfusion (I/R) injury of the gut is a significant problem in a variety of clinical settings and is associated with a high morbidity and mortality. Although the mechanisms involved in the pathogenesis of gut I/R injury have not been fully elucidated, it is generally believed that oxidative stress with subsequent inflammatory injury plays an important role. Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme, followed by production of CO, biliverdin, and free iron. The HO system is believed to confer cytoprotection by inhibiting inflammation, oxidation, and apoptosis, and maintaining microcirculation. HO-1, an inducible form of HO, serves a vital metabolic function as the rate-limiting step in the heme degradation pathway, and affords protection in models of intestinal I/R injury. HO-1 system is an important player in intestinal I/R injury condition, and may offer new targets for the management of this condition.展开更多
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr...Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.展开更多
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
文摘With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but ischemic brain tissues still face ischemia-reperfusion injury after recanalization. Nowadays, effective neurological protective agents still cannot completely resist the multiple damages of ischemia-reperfusion injury. As an iron-dependent mode of programmed cell death, ferroptosis occupies an important position in ischemia-reperfusion injury. Selenium plays a unique protective role in ischemia-reperfusion injury as an active site element in the center of glutathione peroxidase. Therefore, the study mainly aims to review the protective role of selenium in IS and the related mechanisms, as well as the effect of selenium on the risk factors of IS.
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
文摘Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
文摘Introduction: Renal ischemia-reperfusion (IR) is responsible for injuries such as destruction or dysfunction of tubular epithelial cells with inflammatory reaction and oxidative stress. Several therapeutic methods have been tested to alleviate ischemia-perfusion injury, ranging from using anti-inflammatory drugs, antioxidants, and plants from traditional pharmacopeia to administering RNA interference. However, there is currently no effective therapeutic option available for the treatment of renal IR injury, other than supportive therapies such as renal replacement therapy or hydration. Objective: This present study aimed to evaluate the effect of Guiera senegalensis on renal ischemia reperfusion, a recognized plant for its antioxidant and anti-inflammatory properties. Materials and Methods: Twenty-four (24) adult male Wistar rats were divided into four following groups: SLAM (subjected to a median laparotomy with simulated ischemia);GUIERRA (animals that received 250 mg/kg of guierra senegalensis orally, once a day, for 5 days, with simulated renal ischemia);IR (animals that underwent laparotomy followed by clamping of bilateral renal pedicles for 45 min and followed by reperfusion);GUIERRA + IR (animals given GUIERRA at the dosage of 250 mg/kg per day, for 5 days and then subjected to renal ischemia-reperfusion). Data analysis was performed by ANOVA, and a significance level of p Results: Compared with the I/R group, rats in the GUIERRA + IR group showed reduced histopathological damage scores (p Conclusion: The results of this preliminary work suggest that Guiera senegalensis decreases the degree of tissue damage in renal ischemia-reperfusion cases. This plant seems to be a promising therapeutic;further studies could help to precise the targets of its compounds on ischemia-reperfusion pathways.
文摘Increasing evidence of the significant clinical value of protection against ischemia/reperfusion injury has contributed to the realization of the independent importance of this approach in improving prognosis and reducing cardiovascular mortality.Extracellular vesicles(EVs)derived by adipose mesenchymal stem cells may mediate the paracrine effects of stem cells and provide regenerative and anti-inflammatory properties,which are enhanced byγ-aminobutyric acid.The protective effects on cardiac myocytes may result from the EV embarked by miR-21-5p,which is a target for thioredoxin-interacting protein,regulating the formation of thioredoxin-interacting protein-thioredoxin complexes and subsequently enhancing the antioxidant activity of thioredoxin.It has been found thatγ-aminobutyric acid governs myocardial bioenergetics through suppressing inflammation and supporting mitochondrial structure.Finally,stem cell-based cell-free therapy based on adipose-derived stem cell EVs is considered a promising approach to individualized management of ischemia-induced cardiomyopathy.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金supported by the National Natural Science Foundation of China,Nos.82102295(to WG),82071339(to LG),82001119(to JH),and 81901994(to BZ).
文摘Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
基金Supported by the National Natural Science Foundation of China(No.82071888)the Natural Science Foundation of Shandong Province(No.ZR2021MH351,No.ZR2020MH074)+1 种基金the Introduction and Cultivation Project for Young Innovative Talents in Shandong ProvinceWeifang Science and Technology Development Plan(No.2021GX057).
文摘AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease.
文摘Subjective: This study aimed to investigate the therapeutic mechanisms of 7-hydroxyflavone (7-HF) in treating myocardial ischemia/reperfusion injury (MI/RI) via network pharmacology, molecular docking, target validation, and experiments at the animal level. Methods: Firstly, the genes of 7-HF were acquired from PharmMapper, TCMSP, and SwissTargetPrediction. At the same time, MI/RI-related genes were obtained from OMIM, GeneCards, and TTD online platforms. Subsequently, string platform and Cytoscape 3.9.2 were used to construct protein-protein interaction network diagrams and 7-HF-targets-signaling pathways-MI/RI network. Then, the Metascape platform was used to conduct functional enrichment analyses. Next, AutoDock Vina and Pymol were used to perform molecular docking. The hub targets were validated in the GSE66360. Lastly, SOD, MDA, transmission electron microscope, quantitative real-time PCR, and western blot were used to validate in MI/RI rats. Results: 139 genes of 7-HF, 4832 genes of MI/RI were obtained. The 47 interact genes between 7-HF and MI/RI targets for MI/RI were likely to act through multiple pathways. And NQO1 was a critical target in the above process. In an animal experiment, 7-HF could relieve the injured interfibrillar mitochondria and myocardial fibers, decrease the expression of MDA and SOD, and increase the expression of Nrf2, NQO1 and HO-1 in the mRNA and protein level in the MI/RI rats. Conclusion: This study preliminarily demonstrated that 7-HF could provide cardioprotection by inhibiting the oxidative stress and up-regulating Nrf2/NQO1/HO-1 signaling pathway based on network pharmacology, molecular docking, target validation, and animal experiments.
基金supported by the Youth Development Project of Air Force Military Medical University,No.21 QNPY072Key Project of Shaanxi Provincial Natural Science Basic Research Program,No.2023-JC-ZD-48(both to FF)。
文摘Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury.
基金This work was supported by the National Natural Science Foundation of China(U22A20383,82003668)the Natural Science Foundation of Zhejiang Province(LD22H300002,LQ21H300002)Ningbo Technology Innovation 2025 Major Special Project(2022Z150).
文摘Ischemia/reperfusion(I/R)injury ismarked by the restriction and subsequent restoration of blood supply to an organ.This process can exacerbate the initial tissue damage,leading to further disorders,disability,and even death.Extracellular vesicles(EVs)are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells.The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy.The therapeutic potential of EVs derived from stem cells,endothelial cells,and plasma in I/R injury has been actively investigated.Therefore,this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs.We noted that EVs serve as nontoxic,flexible,and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression.The therapeutic efficacy of EVs can be enhanced through various engineering strategies.Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies.Finally,we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance.This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.
基金the Scientific Foundation of Ministry of Health of China,No.98-2-283Shanghai Natural Science Foundation,No.98ZB14025
文摘AIM To evaluale the potential role of P-selectinand anti-P-selectin monoclonal antibody(mAb)in apoptosis during hepatic/renal ischemia-reperfusion injury.METHODS Plasma P-selectin level,hepatic/renal P-selectin expression and cell apoptosiswere detected in rat model of hepatic/ renalischemia-reperfusion injury.ELISA,immunohist-ochemistry and TUNEL were used.Someischemia-reperfusion rats were treated with anti-P-selectin mAb.RESULTS Hepatic/renal function insuffic-iency,up-regulated expression of P-selectin inplasma and hepatic/renal tissue,hepatic/renalhistopathological damages and cell apoptosiswere found in rats with hepatic/renal ischemia-reperfusion injury,while these changes becameless conspicuous in animals treated with anti-P-selectin mAb.CONCLUSION P-selectin might mediateneutrophil infiltration and cell apoptosis andcontribute to hepatic/renal ischemia-reperfusioninjury,anti-P-selectin mAb might be an efficientapproach for the prevention and treatment ofhepatic/renal ischemia-reperfusion injury.
基金the Natural Science Foundation of Hunan Province in China,No.11JJ5081grants from Hunan Provincial Science and Technology Department in China,No.2012SK3226 and 2011SK3236the National Natural Science Foudation of China,No.81271298/H0906
文摘In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/ reperfusion injury, levels of the inflammation-related factors E-selectin and myeloperoxidase were upregulated, the oxidative stress-related marker malondialdehyde was increased, and super- oxide dismutase activity was decreased in the ischemic cerebral cortex. Atorvastatin pretreatment significantly inhibited these changes. Our findings indicate that atorvastatin protects against ce-rebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects.
基金Supported by The Natural Science Foundation of Yunnan Province,China, No.2007C137Mthe Joint Funds of Natural Science Foundation of Yunnan Province,China,No.2007C0009R
文摘AIM:To examine whether heme oxygenase (HO)-1 overexpression would exert direct or indirect effects on Kupffer cells activation, which lead to aggravation of reperfusion injury.METHODS: Donors were pretreated with cobalt protoporphyrin (CoPP) or zinc protoporphyrin (ZnPP), HO-1 inducer and antagonist, respectively. Livers were stored at 4℃ for 24 h before transplantation. Kupffer cells were isolated and cultured for 6 h after liver reperfusion.RESULTS: Postoperatively, serum transaminases were significantly lower and associated with less liver injury when donors were pretreated with CoPP, as compared with the ZnPP group. Production of the cytokines tumor necrosis factor-α and interleukin-6 generated by Kupffer cells decreased in the CoPP group. The CD14 expression levels (RT-PCR/Western blots) of Kupffer cells from CoPP-pretreated liver grafts reduced.CONCLUSION: The study suggests that the potential utility of HO-1 overexpression in preventing ischemia/reperfusion injury results from inhibition of Kupffer cells activation.
基金supported by Henan Province Natural Science Foundation(283v2110)
文摘Objective:To explore protective effect of rosiglitazone on myocardial ischemia reperfusion injury.Methods:A total of 48 male SD rats were randomly divided into control group(A),I/R group(B),high dose of rosiglitazone(C),low dose of rosiglitazone(D).Plasm concentration of creatine kinase(CK),CK-MB,hsCRP,Superoxide dismutase(SOD),malondialdehyde(MDA),glutathione peroxidase(GSH-Px),nitric oxide(NO)and endothelin(ET)were measured 1 h later after I/R.24 h after I/R hearts were harvested to observe pathological and ultrastructural changes.Immunohistochemistry and western blotting was used to test CD40 expression in myocardial tissue.Area of myocardial infarction were tested,arrhythmia rate during I/R was recorded.Results:Plasm concentration of creatine kinase(CK),CK-MB,hsCRP,NO,MDA and ET were decreased in group C,D compared with group B.Plasm concentration of T-SOD and GSHPx was increased significantly in group C,D compared with group B.Compared with group B,pathological and ultrastructural changes in group C,D were slightly.Myocardial infarction area and arrhythmia rate were lower in group C,D compare with group B.Conclusions:Rosiglitazone can protect myocardium from I/R injury by enhancing T-SOD and GSH-Px concentration,inhibit inflammatory reaction,improve endothelial function,reduce oxidative stress and calcium overload.
基金supported by the Natural Science Foundation of Shandong Province of China,No.ZR2015HM023(to MSW)the Science and Technology Plan Project of Qingdao City of China,No.19-6-1-50-nsh(to MSW)
文摘Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke,and avoids the complications of general hypothermia.However,the mechanisms by which selective brain hypothermia affects mitochondrial fission remain unknown.In this study,we investigated the effect of selective brain hypothermia on the expression of fission 1 (Fis1) protein,a key factor in the mitochondrial fission system,during focal cerebral ischemia/reperfusion injury.Sprague-Dawley rats were divided into four groups.In the sham group,the carotid arteries were exposed only.In the other three groups,middle cerebral artery occlusion was performed using the intraluminal filament technique.After 2 hours of occlusion,the filament was slowly removed to allow blood reperfusion in the ischemia/reperfusion group.Saline,at 4℃ and 37℃,were perfused through the carotid artery in the hypothermia and normothermia groups,respectively,followed by restoration of blood flow.Neurological function was assessed with the Zea Longa 5-point scoring method.Cerebral infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining,and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining.Fis1 and cytosolic cytochrome c levels were assessed by western blot assay.Fis1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction.Mitochondrial ultrastructure was evaluated by transmission electron microscopy.Compared with the sham group,apoptosis,Fis1 protein and mRNA expression and cytosolic cytochrome c levels in the cortical ischemic penumbra and cerebral infarct volume were increased after reperfusion in the other three groups.These changes caused by cerebral ischemia/reperfusion were inhibited in the hypothermia group compared with the normothermia group.These findings show that selective brain hypothermia inhibits Fis1 expression and reduces apoptosis,thereby ameliorating focal cerebral ischemia/reperfusion injury in rats.Experiments were authorized by the Ethics Committee of Qingdao Municipal Hospital of China (approval No.2019008).
基金Supported by National Natural Science Foundation of China,No.81360079Yunnan Provincial Science and Technology Department and Kunming Medical University Collaborative Fund,No.2013FB142
文摘AIM:To investigate the efficacy and molecularmechanisms of induced heme oxygenase(HO)-1 in protecting liver from warm ischemia/reperfusion(I/R)injury.METHODS:Partial warm ischemia was produced in the left and middle hepatic lobes of SD rats for 75min,followed by 6 h of reperfusion.Rats were treated with saline,cobalt protoporphyrin(Co PP)or zinc protoporphyrin(Zn PP)at 24 h prior to the ischemia insult.Blood and samples of ischemic lobes subjected to ischemia were collected at 6 h after reperfusion.Serum transaminases level,plasma lactate dehydrogenase and myeloperoxidase activity in liver were measured.Liver histological injury and inflammatory cell infiltration were evaluated by tissue section and liver immunohistochemical analysis.We used quantitative reverse transcription polymerase chain reaction to analyze liver expression of inflammatory cytokines and chemokines.The cell lysates were subjected to immunoprecipitation with anti-Toll-IL-1R-containing adaptor inducing interferon-β(TRIF)and anti-myeloid differentiation factor 88(My D88),and then the immunoprecipitates were analyzed by SDS-PAGE and immunoblotted with the indicated antibodies.RESULTS:HO-1 protected livers from I/R injury,as evidenced by diminished liver enzymes and wellpreserved tissue architecture.In comparison with Zn PP livers 6 h after surgery,Co PP treatment livers showed a significant increase inflammatory cell infiltration of lymphocytes,plasma cells,neutrophils and macrophages.The Toll-like receptor(TLR)-4 and TANK binding kinase1 protein levels of rats treated with Co PP significantly reduced in TRIF-immunoprecipitated complex,as compared with Zn PP treatment.In addition,pretreatment with Co PP reduced the expression levels of TLR2,TLR4,IL-1R-associated kinase(IRAK)-1 and tumor necrosis factor receptor-associated factor 6 in My D88-immunoprecipitated complex.The inflammatory cytokines and chemokines m RNA expression rapidly decreased inCo PP-pretreated liver,compared with the Zn PP-treated group.However,the expression of negative regulators Tollinteracting protein,suppressor of cytokine signaling-1,IRAK-M and Src homology 2 domain-containing inositol-5-phosphatase-1 in Co PP treatment rats were markedly up-regulated as compared with Zn PP-treated rats.CONCLUSION:HO-1 protects liver against I/R injury by inhibiting TLR2/TLR4-triggered My D88-and TRIFdependent signaling pathways and increasing expression of negative regulators of TLR signaling in rats.
基金Supported by Natural Science Foundation of Ningbo City, No.2012A610194National Natural Science Foundation of China,No. 81071697Natural Science Foundation of Guangdong Province, No. S2011040003694
文摘Ischemia/reperfusion (I/R) injury of the gut is a significant problem in a variety of clinical settings and is associated with a high morbidity and mortality. Although the mechanisms involved in the pathogenesis of gut I/R injury have not been fully elucidated, it is generally believed that oxidative stress with subsequent inflammatory injury plays an important role. Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme, followed by production of CO, biliverdin, and free iron. The HO system is believed to confer cytoprotection by inhibiting inflammation, oxidation, and apoptosis, and maintaining microcirculation. HO-1, an inducible form of HO, serves a vital metabolic function as the rate-limiting step in the heme degradation pathway, and affords protection in models of intestinal I/R injury. HO-1 system is an important player in intestinal I/R injury condition, and may offer new targets for the management of this condition.
基金supported by the National Natural Science Foundation of China,No.81173355
文摘Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.