Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric...Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions.展开更多
基金supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
文摘Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions.