期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Kernel Model Applied in Kernel Direct Discriminant Analysis for the Recognition of Face with Nonlinear Variations 被引量:1
1
作者 李粉兰 徐可欣 《Transactions of Tianjin University》 EI CAS 2006年第2期147-152,共6页
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it... A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models. 展开更多
关键词 face recognition kernel method: kernel direct discriminant analysis direct linear discriminant analysis
在线阅读 下载PDF
基于KDDA和SFLA-LSSVR算法的WLAN室内定位算法 被引量:9
2
作者 张勇 李飞腾 王昱洁 《计算机研究与发展》 EI CSCD 北大核心 2017年第5期979-985,共7页
针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过... 针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过核函数策略将采集的各接入点(access point,AP)的RSS信号映射到非线性领域,有效提取了非线性定位特征,重组定位信息,去除冗余定位特征和噪声;然后采用LSSVR算法构建指纹点定位特征数据与物理位置的映射关系模型,采用SFLA算法优化该关系模型的参数,并用该关系模型对测试点的位置进行回归预测.实验结果表明:提出算法在相同的采样次数下的定位精度明显优于WKNN,ANN,LSSVR算法,并且在相同的定位精度下,采样次数较大减少,是一种性能良好的WLAN室内定位算法. 展开更多
关键词 接收信号强度 无线局域网 室内定位 核直接判别分析 混洗蛙跳算法 最小二乘支持向量回归机
在线阅读 下载PDF
基于核Fisher判别分析的船舶中央冷却器状态评估
3
作者 吴小豪 邹永久 刘军朴 《舰船科学技术》 北大核心 2025年第2期185-189,共5页
为实现船舶系统或设备的实时状态评估,本文采用核Fisher判别分析法,以船舶中央冷却器为例,选择合适的核函数及核参数,利用其正常数据和异常数据建立状态评估模型,即最佳投影方向,并利用过程数据验证其有效性。结果表明,核Fisher判别分... 为实现船舶系统或设备的实时状态评估,本文采用核Fisher判别分析法,以船舶中央冷却器为例,选择合适的核函数及核参数,利用其正常数据和异常数据建立状态评估模型,即最佳投影方向,并利用过程数据验证其有效性。结果表明,核Fisher判别分析法无需深入分析中央冷却器的结构与原理即可有效识别中央冷却器的正常工况和异常工况,同时能够通过投影值准确描述过程工况的变化过程。在故障发展初期,根据运行参数投影值的变化趋势,可判断船舶系统或设备状态的发展趋势,为早期发现船舶系统或设备的重复性故障提供有效手段。对于船舶系统或设备而言,具有重要的工程实际应用意义。 展开更多
关键词 智能船舶 状态评估 核Fisher判别分析法 中央冷却器 最佳投影方向 重复性故障
在线阅读 下载PDF
基于规范化KDDA的人脸识别算法
4
作者 杨家红 史超 王耀南 《计算机工程与应用》 CSCD 北大核心 2007年第5期36-38,共3页
传统的PCA和LDA算法受限于“小样本问题”,且对像素的高阶相关性不敏感。论文将核函数方法与规范化LDA相结合,将原图像空间通过非线性映射变换到高维特征空间,并借助于“核技巧”在新的空间中应用鉴别分析方法。通过对ORL人脸库的大量... 传统的PCA和LDA算法受限于“小样本问题”,且对像素的高阶相关性不敏感。论文将核函数方法与规范化LDA相结合,将原图像空间通过非线性映射变换到高维特征空间,并借助于“核技巧”在新的空间中应用鉴别分析方法。通过对ORL人脸库的大量实验表明,该方法在特征提取方面优于PCA,KPCA,LDA等其他方法,在简化分类器的同时,也可以获得高识别率。 展开更多
关键词 核函数方法 规范化kdda KPCA 小样本问题
在线阅读 下载PDF
核Direct LDA子空间高光谱影像地物分类
5
作者 刘敬 《计算机科学》 CSCD 北大核心 2012年第6期274-277,共4页
为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA... 为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA提取遥感影像的非线性可分特征,然后在KDLDA子空间采用最小距离分类器进行分类识别。机载可见光/红外成像光谱仪(Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)的高光谱影像识别结果表明,相比原空间法、LDA子空间法、直接线性判别分析(Direct Linear Discriminant Analysis,DLDA)子空间法、核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)子空间法,KDLDA子空间法可显著提高识别效率。 展开更多
关键词 地物分类 非线性可分性特征 核直接线性判别分析 高光谱影像
在线阅读 下载PDF
基于规范化KDDA的人脸识别
6
作者 史操 许灿辉 杨家红 《计算机工程与应用》 CSCD 北大核心 2007年第9期227-230,共4页
传统的PCA和LDA算法受限于“小样本问题”,且对象素的高阶相关性不敏感。文章将核函数方法与规范化LDA相结合,将原图像空间通过非线性映射变换到高维特征空间,并借助于“核技巧”在新的空间中应用鉴别分析方法。通过对ORL人脸库的大量... 传统的PCA和LDA算法受限于“小样本问题”,且对象素的高阶相关性不敏感。文章将核函数方法与规范化LDA相结合,将原图像空间通过非线性映射变换到高维特征空间,并借助于“核技巧”在新的空间中应用鉴别分析方法。通过对ORL人脸库的大量实验研究表明,该文方法在特征提取方面明显优于PCA、KPCA、LDA等其他传统的人脸识别方法,在简化分类器的同时,也可以获得高识别率。 展开更多
关键词 核函数方法 规范化kdda KPCA 小样本问题
在线阅读 下载PDF
基于核直接判别分析和支持向量回归的WLAN室内定位算法 被引量:41
7
作者 徐玉滨 邓志安 马琳 《电子与信息学报》 EI CSCD 北大核心 2011年第4期896-901,共6页
该文针对RSS信号的时变性降低WLAN室内定位精度的问题,提出了一种新的基于核直接判别分析和支持向量回归的定位算法。该算法利用核直接判别分析对原始RSS信号进行定位信息重组,去除冗余定位特征和噪声,提取最具判别力的定位特征,然后采... 该文针对RSS信号的时变性降低WLAN室内定位精度的问题,提出了一种新的基于核直接判别分析和支持向量回归的定位算法。该算法利用核直接判别分析对原始RSS信号进行定位信息重组,去除冗余定位特征和噪声,提取最具判别力的定位特征,然后采用支持向量回归算法建立定位特征与物理位置的映射关系。实验结果表明,提出算法的定位精度明显高于传统定位算法,且大大降低了离线阶段数据采集的工作量。 展开更多
关键词 无线局域网 室内定位 核直接判别分析 支持向量回归
在线阅读 下载PDF
分数次幂多项式核函数在核直接判别式分析中的应用 被引量:12
8
作者 李粉兰 唐文彦 +1 位作者 段海峰 郝建国 《光学精密工程》 EI CAS CSCD 北大核心 2007年第9期1410-1414,共5页
提出了在核直接判别式分析(KDDA)中采用分数次幂多项式核函数的方法,并在ORL人脸库中对多头部姿态、尺度等变化进行了实验。实验结果表明,采用分数次幂多项式核函数比采用整数次幂多项式核函数时的KDDA误识别率明显要低(取36个特征数时... 提出了在核直接判别式分析(KDDA)中采用分数次幂多项式核函数的方法,并在ORL人脸库中对多头部姿态、尺度等变化进行了实验。实验结果表明,采用分数次幂多项式核函数比采用整数次幂多项式核函数时的KDDA误识别率明显要低(取36个特征数时,误识别率低2%),且随着使用的特征数不断减少,这种优势愈加明显。实验充分证实了在KDDA中采用分数次幂多项式核函数的有效性及其对人脸的光照、头部姿态、面部表情等变化的鲁棒性。 展开更多
关键词 核直接判别式分析 面部表情 分数次幂多项式核函数 ORL人脸数据库
在线阅读 下载PDF
改进的核直接Fisher描述分析与人脸识别 被引量:8
9
作者 厉小润 赵光宙 赵辽英 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第4期583-589,共7页
针对奇异情况下核Fisher鉴别分析中非线性最优鉴别矢量集的求解问题,提出了改进的核直接描述分析(IKDDA).根据再生核理论,定义核类内散度矩阵和核类间散度矩阵,将高维特征空间中的Fisher鉴别准则函数转化为核Fisher鉴别准则函数.基于同... 针对奇异情况下核Fisher鉴别分析中非线性最优鉴别矢量集的求解问题,提出了改进的核直接描述分析(IKDDA).根据再生核理论,定义核类内散度矩阵和核类间散度矩阵,将高维特征空间中的Fisher鉴别准则函数转化为核Fisher鉴别准则函数.基于同构映射原理和奇异值分解定理,在一个更小的空间内将核Fisher鉴别准则函数的极大值问题转化为其倒数的极小值问题,使最终的解不需要分开考虑核类内散度矩阵的零空间和非零空间.在ORL和UMIST人脸库上的实验结果表明,IKDDA方法与其他方法相比,具有较低的误识率和较快的运行速度. 展开更多
关键词 核直接Fisher描述分析 最优鉴别矢量集 特征提取 人脸识别
在线阅读 下载PDF
基于直接辨别分析的雷达目标一维距离像识别 被引量:4
10
作者 刘华林 杨万麟 《电波科学学报》 EI CSCD 北大核心 2007年第6期1020-1024,共5页
提出了基于零空间的线性直接辨别分析与非线性推广直接辨别分析方法,并将其用于雷达目标一维距离像识别。与传统子空间方法相比,上述两种方法保留并充分利用了类内散度矩阵最具分辨力的零空间信息,因而大大提高了目标的识别性能。对三... 提出了基于零空间的线性直接辨别分析与非线性推广直接辨别分析方法,并将其用于雷达目标一维距离像识别。与传统子空间方法相比,上述两种方法保留并充分利用了类内散度矩阵最具分辨力的零空间信息,因而大大提高了目标的识别性能。对三种实测飞机数据的识别结果表明了所提方法的有效性。 展开更多
关键词 雷达目标识别 一维距离像 直接辨别分析 核方法 特征提取
在线阅读 下载PDF
综合时频域及核判别分析的两级特征提取新方法 被引量:2
11
作者 孙贤明 樊晓光 +2 位作者 禚真福 丛伟 陈少华 《计算机工程与应用》 CSCD 北大核心 2018年第3期115-119,141,共6页
为了解决模拟电路软故障诊断中特征提取不全面准确的问题,提出了一种基于综合时频域及核判别分析的两级特征提取新方法。首先,对采集到的故障响应信号分别提取均值、方差等时域统计特征和小波包分解后不同频带的能量作为频域特征;然后,... 为了解决模拟电路软故障诊断中特征提取不全面准确的问题,提出了一种基于综合时频域及核判别分析的两级特征提取新方法。首先,对采集到的故障响应信号分别提取均值、方差等时域统计特征和小波包分解后不同频带的能量作为频域特征;然后,通过核判别分析方法对故障特征进一步优选,从而保证故障特征的准确有效性;最后,将所得到的最优故障特征输入支持向量机进行故障诊断。对Sallen-Key带通滤波器电路的仿真实验结果表明,该方法能够很好地反映故障响应信号的本质特征,有效提高故障诊断的性能。 展开更多
关键词 模拟电路软故障诊断 特征提取 小波包能量谱 时域统计特征 核判别分析 有向无环图支持向量机
在线阅读 下载PDF
基于Log-Gabor滤波特征的黎曼流形图像集分类算法 被引量:3
12
作者 王锐 吴小俊 《模式识别与人工智能》 EI CSCD 北大核心 2017年第4期377-384,共8页
生物神经中的感知理论符合黎曼流形,相比其它滤波器,Log-Gabor滤波器更适合人眼的非线性对数特性,因此两者结合符合人类视觉的感知过程.基于上述情况,文中利用协方差鉴别学习,提出基于Log-Gabor滤波特征的黎曼流形图像集分类算法.使用Lo... 生物神经中的感知理论符合黎曼流形,相比其它滤波器,Log-Gabor滤波器更适合人眼的非线性对数特性,因此两者结合符合人类视觉的感知过程.基于上述情况,文中利用协方差鉴别学习,提出基于Log-Gabor滤波特征的黎曼流形图像集分类算法.使用Log-Gabor滤波器滤波图像,获得多尺度多方向的图像特征,然后对高维的协方差矩阵使用双向二维主成分分析进行降维,利用协方差鉴别学习进行分类.在多个标准数据库上的实验结果表明文中算法效果较好,从而验证算法的有效性. 展开更多
关键词 协方差鉴别学习(CDL) 黎曼流形 核鉴别分析(KDA) 双向二维主成分分析((2D)^2PCA)
在线阅读 下载PDF
不同规模数据集下的人脸识别方法(英文)
13
作者 刘瑾 张乐石 徐可欣 《纳米技术与精密工程》 EI CAS CSCD 2007年第3期164-168,共5页
系统研究了类内变化和类数目增加所引起的人脸识别中的非线性识别问题,并比较了线性识别方法和非线性识别方法在不同用户集规模下的适用性.采用CAS-PEAL大型人脸数据库中的表情集(330人)和姿势集(1 000人)进行了3组实验.实验结果表明:... 系统研究了类内变化和类数目增加所引起的人脸识别中的非线性识别问题,并比较了线性识别方法和非线性识别方法在不同用户集规模下的适用性.采用CAS-PEAL大型人脸数据库中的表情集(330人)和姿势集(1 000人)进行了3组实验.实验结果表明:当训练集的人数在300人(表情集)以内时,增加类内的变化不会对线性识别方法造成影响,并可以提高识别的准确率;但是,当保持类内图片数不变而增加类的数目时,类数(人数)增加对线性方法和非线性方法产生了不同的影响.随着人数增加,线性识别方法的识别准确率逐渐降低,而基于核方法的非线性方法却能够一直保持识别准确率的稳定.因此,应该根据类的总数合理地选择识别方法,并合理地设计类内的图片数,这样有助于提高人脸识别系统的识别率.同时,实验也验证了基于核方法(kernel)的非线性人脸识别方法更适宜于人数规模较大的情况. 展开更多
关键词 主成分分析法 直接线性判别分析 核直接线性判别分析 非线性 核方法
在线阅读 下载PDF
有效的协方差判别学习算法 被引量:3
14
作者 王秀友 刘华明 +1 位作者 范建中 徐冬青 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第10期1847-1857,共11页
在基于视频的图像集分类中,类内样本多样性问题是影响算法分类性能的一个主要原因.为了尝试解决该问题,提出了一种图像集分类算法,其目标体现在2个方面:(1)使得算法在时间效率上相较于协方差判别学习(CDL)等具有代表性的图像集分类算法... 在基于视频的图像集分类中,类内样本多样性问题是影响算法分类性能的一个主要原因.为了尝试解决该问题,提出了一种图像集分类算法,其目标体现在2个方面:(1)使得算法在时间效率上相较于协方差判别学习(CDL)等具有代表性的图像集分类算法有进一步的提升;(2)使得算法在分类精度上也仍然具有可比性.首先利用双向二维主成分分析对原始的协方差特征进行降维,使其变得更加紧凑.同时,为了抽取到更具判别性的特征信息,对每一个低维紧凑的协方差矩阵应用QR分解,使其变换成一个正交基矩阵和一个非奇异的上三角矩阵.考虑数据分布空间的黎曼流形特性,通过定义函数的方式使得上三角矩阵仍然分布在由对称正定(SPD)矩阵张成的SPD流形之上.此时,原始的样本空间就转化成了一个由正交基矩阵张成的Grassmann流形和一个特征分布更加紧凑的新的SPD流形.为了更好地整合这2种黎曼流形特征,首先利用Stein散度以及对数欧氏距离导出一个黎曼流形测地线距离度量;然后,利用该度量设计一个正定的核函数将上述特征映射到一个高维Hilbert核空间;最后,利用核判别分析算法进行判别子空间特征学习.文中算法在5个基准视频集YTC, Honda, ETH-80, MDSD以及AFEW上均取得了较好的分类结果,同时在计算效率上也优于CDL等对比算法,从而表明了其可行性和有效性. 展开更多
关键词 协方差鉴别学习 黎曼流形 双向二维主成分分析 QR分解 对数欧氏距离 Stein散度 核判别分析
在线阅读 下载PDF
基于局部保持投影和核直接判别分析的掌纹识别 被引量:6
15
作者 郭金玉 李元 +1 位作者 孔晓光 曾静 《光电子.激光》 EI CAS CSCD 北大核心 2011年第1期127-130,共4页
为了提高识别性能,提出运用局部保持投影(LPP)和核直接判别分析(KDDA)相结合的方法进行掌纹识别。在小样本图像识别中,为了解决特征方程矩阵的奇异性,首先运用图像下抽样降低掌纹空间的维数,然后应用LPP提取掌纹局部结构特征作为KDDA的... 为了提高识别性能,提出运用局部保持投影(LPP)和核直接判别分析(KDDA)相结合的方法进行掌纹识别。在小样本图像识别中,为了解决特征方程矩阵的奇异性,首先运用图像下抽样降低掌纹空间的维数,然后应用LPP提取掌纹局部结构特征作为KDDA的输入提取分类特征,计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库,对本文算法进行测试。实验结果表明,与主元分析(PCA)、独立元分析(ICA)、PCA+LPP、核局部保持投影(KLPP)、核判别分析(KDA)和抽样(sample)+LPP相比,本文算法的识别率(RR)最高为99.71%,特征提取和匹配总时间为0.131 s,满足实时系统的要求。 展开更多
关键词 图像处理 掌纹识别 下抽样 局部保持投影(LPP) 核直接判别分析(kdda)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部