This paper presents a novel biosensor for bitter substance detection on the basis of light addressable potentiometric sensor(LAPS).Taste receptor cells(TRCs)were used as sensitive elements,which can respond to differe...This paper presents a novel biosensor for bitter substance detection on the basis of light addressable potentiometric sensor(LAPS).Taste receptor cells(TRCs)were used as sensitive elements,which can respond to different bitter stimuli with extreme high sensitivity and speci-ficity.TRCs were isolated from the taste buds of rats and cultured on the surface of LAPS chip.Due to the unique advantages such as single-cell recording,light addressable capability,and noninvasiveness,LAPS chip was used as secondary transducer to monitor the responses of TRCs by recording extracelluar potential changes.The results indicate LAPS chip can effectively record the responses of TRCs to different bitter substances used in this study in a real-time manner for a long-term.In addition,by performing principal component analysis on the LAPS recording data,different bitter substances tested can be successfully discriminated.It is suggested this TRCsLAPS hybrid biosensor could be a valuable tool for bitter substance detection.With further improvement and novel design,it has great potentials to be applied in both basic research and practical applications related to bitter taste detection.展开更多
Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect ...Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect of ultraviolet (UV) treatment on the silanization level of TiO2 thin film by 3-aminopropyltriethoxysilane (APTS),fluorescein isothiocyanate (FITC) was used to label the amine group on the end of APTS immobilized onto the TiO2 thin film. We found that,with UV irradiation,the silanization level of the irradiated area of the TiO2 film was improved compared with the non-irradiated area under well-controlled conditions. This result indicates that TiO2 can act as a coating material on the biosensor surface to improve the effect and efficiency of the covalent immobilization of biomolecules on the sensor surface. The artificially synthesized probe DNA molecules were covalently linked onto the surface of TiO2 film. The hybridization of probe DNA and target DNA was monitored by the recording of I-V curves that shift along the voltage axis during the process of reaction. A significant LAPS signal can be detected at 10 μmol/L of target DNA sample.展开更多
This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed o...This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor of phosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET).展开更多
基金This work was supported by the grants from the National Natural Science Foundation of China(Grant Nos.60725102,31000448)the China Postdoctoral Science Foundation(Grant Nos.20100471737,201104734)the Key Project of Zhejiang Province(Grant No.2010C14006).
文摘This paper presents a novel biosensor for bitter substance detection on the basis of light addressable potentiometric sensor(LAPS).Taste receptor cells(TRCs)were used as sensitive elements,which can respond to different bitter stimuli with extreme high sensitivity and speci-ficity.TRCs were isolated from the taste buds of rats and cultured on the surface of LAPS chip.Due to the unique advantages such as single-cell recording,light addressable capability,and noninvasiveness,LAPS chip was used as secondary transducer to monitor the responses of TRCs by recording extracelluar potential changes.The results indicate LAPS chip can effectively record the responses of TRCs to different bitter substances used in this study in a real-time manner for a long-term.In addition,by performing principal component analysis on the LAPS recording data,different bitter substances tested can be successfully discriminated.It is suggested this TRCsLAPS hybrid biosensor could be a valuable tool for bitter substance detection.With further improvement and novel design,it has great potentials to be applied in both basic research and practical applications related to bitter taste detection.
基金Project supported by the National Natural Science Foundation of China (Nos. 30627002 and 60725102)the Interdisciplinary Research Foundation of Zhejiang University (No. 2009-15), China
文摘Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect of ultraviolet (UV) treatment on the silanization level of TiO2 thin film by 3-aminopropyltriethoxysilane (APTS),fluorescein isothiocyanate (FITC) was used to label the amine group on the end of APTS immobilized onto the TiO2 thin film. We found that,with UV irradiation,the silanization level of the irradiated area of the TiO2 film was improved compared with the non-irradiated area under well-controlled conditions. This result indicates that TiO2 can act as a coating material on the biosensor surface to improve the effect and efficiency of the covalent immobilization of biomolecules on the sensor surface. The artificially synthesized probe DNA molecules were covalently linked onto the surface of TiO2 film. The hybridization of probe DNA and target DNA was monitored by the recording of I-V curves that shift along the voltage axis during the process of reaction. A significant LAPS signal can be detected at 10 μmol/L of target DNA sample.
基金supported by the National Natural Science Foundation ofChina (No. 60725102)the Natural Science Foundation of Zhejiang Province, China (No. R205505)
文摘This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor of phosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET).