Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generaliz...Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect...This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.展开更多
In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,...In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.展开更多
Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian ...Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.展开更多
We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived...We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived,and characterization of SSP IMEX methods is provided following the recent work by Spijker.Stability properties of these methods with respect to the decoupled linear system with a complex parameter,and a coupled linear system with real parameters are also investigated.Examples of methods up to the order p=4 and stage order q—p are provided.Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration,and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.展开更多
This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
This article investigates the property of linearly dependence of solutions f(z) and f(z + 2πi) for higher order linear differential equations with entire periodic coefficients.
In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-tim...In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.展开更多
We study the L^l-error estimates for the upwind scheme to the linear advection equations with a piecewise constant coefficients modeling linear waves crossing interfaces. Here the interface condition is immersed into ...We study the L^l-error estimates for the upwind scheme to the linear advection equations with a piecewise constant coefficients modeling linear waves crossing interfaces. Here the interface condition is immersed into the upwind scheme. We prove that, for initial data with a bounded variation, the numerical solution of the immersed interface upwind scheme converges in L^l-norm to the differential equation with the corresponding interface condition. We derive the one-halfth order L^l-error bounds with explicit coefficients following a technique used in [25]. We also use some inequalities on binomial coefficients proved in a consecutive paper [32].展开更多
In this paper we give proof of three binomial coefficient inequalities. These inequalities are key ingredients in [Wen and Jin, J. Comput. Math. 26, (2008), 1-22] to establish the L^1-error estimates for the upwind ...In this paper we give proof of three binomial coefficient inequalities. These inequalities are key ingredients in [Wen and Jin, J. Comput. Math. 26, (2008), 1-22] to establish the L^1-error estimates for the upwind difference scheme to the linear advection equations with a piecewise constant wave speed and a general interface condition, which were further used to establish the L^1-error estimates for a Hamiltonian-preserving scheme developed in [Jin and Wen, Commun. Math. Sci. 3, (2005), 285-315] to the Liouville equation with piecewise constant potentials [Wen and Jin, SIAM J. Numer. Anal. 46, (2008), 2688-2714].展开更多
This paper is concerned with the linear quadratic regulation (LQR) problem for both linear discrete-time systems and linear continuous-time systems with multiple delays in a single input channel. Our solution is giv...This paper is concerned with the linear quadratic regulation (LQR) problem for both linear discrete-time systems and linear continuous-time systems with multiple delays in a single input channel. Our solution is given in terms of the solution to a two-dimensional Riccati difference equation for the discrete-time case and a Riccati partial differential equation for the continuous-time case. The conditions for convergence and stability are provided.展开更多
There are given sufficient conditions for the ultimate boundedness of solutions and for the existence of periodic solutions of a certain vector differential equation of third-order.
In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary co...In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally.展开更多
A century ago the classical physics couldn’t explain many atomic physical phenomena. Now the situation has changed. It’s because within the framework of classical physics with the help of Maxwell’s equations we can...A century ago the classical physics couldn’t explain many atomic physical phenomena. Now the situation has changed. It’s because within the framework of classical physics with the help of Maxwell’s equations we can derive Schrödinger’s equation, which is the foundation of quantum physics. The equations for energy, momentum, frequency and wavelength of the electromagnetic wave in the atom are derived using the model of atom by analogy with the transmission line. The action constant A0 = (μ0/ε0)1/2s02e2 is a key term in the above mentioned equations. Besides the other well-known constants, the only unknown constant in the last expression is a structural constant of the atom s0. We have found that the value of this constant is 8.277 56 and that it shows up as a link between macroscopic and atomic world. After calculating this constant we get the theory of atoms based on Maxwell’s and Lorentz equations only. This theory does not require knowledge of Planck’s constant h, which is replaced with theoretically derived action constant A0, while the replacement for the fine structure constant α-1 is theoretically derived expression 2s02 = 137.036. So, the structural constant s0 replaces both constants h and α. This paper also defines the stationary states of atoms and shows that the maximal atomic number is equal to Zmax = 137. The presented model of the atoms covers three of the four fundamental interactions, namely the electromagnetic, weak and strong interactions.展开更多
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
In this paper, we prove that, under appropriate hypotheses, the odd-order nonlinear neutral delay differential equation has the same oscillatory character as the associated linear equation with periodic coefficients O...In this paper, we prove that, under appropriate hypotheses, the odd-order nonlinear neutral delay differential equation has the same oscillatory character as the associated linear equation with periodic coefficients Our method is based on the establishment of a new comparison theorem for the oscillation of Eq.(E). Hence we prove that the parameter set such that Eq.(E) has a nonoscillatory solution is closed in certain metric space, and avoid the difficulty to set the necessary and sufficient condition for the oscillation of Eq.(E).展开更多
We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be ...We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be adapted processes with respect to the common noise filtration.Semi closed-loop strategies are introduced,and following the dynamic programming approach in(Pham and Wei,Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics,2016),we solve the problem and characterize time-consistent optimal control by means of a system of decoupled backward stochastic Riccati differential equations.We present several financial applications with explicit solutions,and revisit,in particular,optimal tracking problems with price impact,and the conditional mean-variance portfolio selection in an incomplete market model.展开更多
Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neith...Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present explicit symplectic geometric algorithms to deal with the quaternion kinematical differential equation by modelling its time-invariant and time-varying versions with Hamiltonian systems and adopting a three-step strategy. Firstly,a generalized Euler's formula and Cayley-Euler formula are proved and used to construct symplectic single-step transition operators via the centered implicit Euler scheme for autonomous Hamiltonian system. Secondly, the symplecticity, orthogonality and invertibility of the symplectic transition operators are proved rigorously. Finally, the explicit symplectic geometric algorithm for the time-varying quaternion kinematical differential equation, i.e., a non-autonomous and non-linear Hamiltonian system essentially, is designed with the theorems proved. Our novel algorithms have simple structures, linear time complexity and constant space complexity of computation. The correctness and efficiencies of the proposed algorithms are verified and validated via numerical simulations.展开更多
基金Project Supported by the Natural Science Foundation of China (10471065)the Natural Science Foundation of Guangdong Province (04010474)
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金supported by the National Natural Science Foundation of China (11101096)
文摘This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.
基金Provincial Science and Technology Foundation of Guizhou
文摘In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.
基金The supports of the National Natural Science Foundation of China(Grant Nos.51725804 and U1711264)the Research Fund for State Key Laboratories of Ministry of Science and Technology of China(SLDRCE19-B-23)the Shanghai Post-Doctoral Excellence Program(2022558)。
文摘Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.
文摘We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived,and characterization of SSP IMEX methods is provided following the recent work by Spijker.Stability properties of these methods with respect to the decoupled linear system with a complex parameter,and a coupled linear system with real parameters are also investigated.Examples of methods up to the order p=4 and stage order q—p are provided.Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration,and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
基金Supported by the Brain Pool Program of Korea Federation of Science and Technology Societies(072-1-3-0164)the Natural Science Foundation of Guangdong Province in China(06025059)
文摘This article investigates the property of linearly dependence of solutions f(z) and f(z + 2πi) for higher order linear differential equations with entire periodic coefficients.
文摘In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.
基金supported in part by the Knowledge Innovation Project of the Chinese Academy of Sciences Nos. K5501312S1 and K5502212F1, and NSFC grant No. 10601062supported in part by NSF grant Nos. DMS-0305081 and DMS-0608720, NSFC grant No. 10228101 and NSAF grant No. 10676017
文摘We study the L^l-error estimates for the upwind scheme to the linear advection equations with a piecewise constant coefficients modeling linear waves crossing interfaces. Here the interface condition is immersed into the upwind scheme. We prove that, for initial data with a bounded variation, the numerical solution of the immersed interface upwind scheme converges in L^l-norm to the differential equation with the corresponding interface condition. We derive the one-halfth order L^l-error bounds with explicit coefficients following a technique used in [25]. We also use some inequalities on binomial coefficients proved in a consecutive paper [32].
基金supported in part by the Knowledge Innovation Project of the Chinese Academy of Sciences grants K5501312S1,K5502212F1,K7290312G7 and K7502712F7NSFC grant 10601062
文摘In this paper we give proof of three binomial coefficient inequalities. These inequalities are key ingredients in [Wen and Jin, J. Comput. Math. 26, (2008), 1-22] to establish the L^1-error estimates for the upwind difference scheme to the linear advection equations with a piecewise constant wave speed and a general interface condition, which were further used to establish the L^1-error estimates for a Hamiltonian-preserving scheme developed in [Jin and Wen, Commun. Math. Sci. 3, (2005), 285-315] to the Liouville equation with piecewise constant potentials [Wen and Jin, SIAM J. Numer. Anal. 46, (2008), 2688-2714].
基金supported by the National Natural Science Foundation of China (No.60828006)the National Natural Science Foundation for Distinguished Young Scholars of China (No.60825304)the Major State Basic Research Development Program of China (973 Program)(No.2009cb320600)
文摘This paper is concerned with the linear quadratic regulation (LQR) problem for both linear discrete-time systems and linear continuous-time systems with multiple delays in a single input channel. Our solution is given in terms of the solution to a two-dimensional Riccati difference equation for the discrete-time case and a Riccati partial differential equation for the continuous-time case. The conditions for convergence and stability are provided.
文摘There are given sufficient conditions for the ultimate boundedness of solutions and for the existence of periodic solutions of a certain vector differential equation of third-order.
文摘In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally.
文摘A century ago the classical physics couldn’t explain many atomic physical phenomena. Now the situation has changed. It’s because within the framework of classical physics with the help of Maxwell’s equations we can derive Schrödinger’s equation, which is the foundation of quantum physics. The equations for energy, momentum, frequency and wavelength of the electromagnetic wave in the atom are derived using the model of atom by analogy with the transmission line. The action constant A0 = (μ0/ε0)1/2s02e2 is a key term in the above mentioned equations. Besides the other well-known constants, the only unknown constant in the last expression is a structural constant of the atom s0. We have found that the value of this constant is 8.277 56 and that it shows up as a link between macroscopic and atomic world. After calculating this constant we get the theory of atoms based on Maxwell’s and Lorentz equations only. This theory does not require knowledge of Planck’s constant h, which is replaced with theoretically derived action constant A0, while the replacement for the fine structure constant α-1 is theoretically derived expression 2s02 = 137.036. So, the structural constant s0 replaces both constants h and α. This paper also defines the stationary states of atoms and shows that the maximal atomic number is equal to Zmax = 137. The presented model of the atoms covers three of the four fundamental interactions, namely the electromagnetic, weak and strong interactions.
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
文摘In this paper, we prove that, under appropriate hypotheses, the odd-order nonlinear neutral delay differential equation has the same oscillatory character as the associated linear equation with periodic coefficients Our method is based on the establishment of a new comparison theorem for the oscillation of Eq.(E). Hence we prove that the parameter set such that Eq.(E) has a nonoscillatory solution is closed in certain metric space, and avoid the difficulty to set the necessary and sufficient condition for the oscillation of Eq.(E).
基金work is part of the ANR project CAESARS(ANR-15-CE05-0024)lso supported by FiME(Finance for Energy Market Research Centre)and the“Finance et Developpement Durable-Approches Quantitatives”EDF-CACIB Chair。
文摘We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be adapted processes with respect to the common noise filtration.Semi closed-loop strategies are introduced,and following the dynamic programming approach in(Pham and Wei,Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics,2016),we solve the problem and characterize time-consistent optimal control by means of a system of decoupled backward stochastic Riccati differential equations.We present several financial applications with explicit solutions,and revisit,in particular,optimal tracking problems with price impact,and the conditional mean-variance portfolio selection in an incomplete market model.
基金supported by the Fundamental Research Funds for the Central Universities of China(ZXH2012H005)supported in part by the National Natural Science Foundation of China(61201085,51402356,51506216)+1 种基金the Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China(U1633101)the Joint Fund of the Natural Science Foundation of Tianjin(15JCQNJC42800)
文摘Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present explicit symplectic geometric algorithms to deal with the quaternion kinematical differential equation by modelling its time-invariant and time-varying versions with Hamiltonian systems and adopting a three-step strategy. Firstly,a generalized Euler's formula and Cayley-Euler formula are proved and used to construct symplectic single-step transition operators via the centered implicit Euler scheme for autonomous Hamiltonian system. Secondly, the symplecticity, orthogonality and invertibility of the symplectic transition operators are proved rigorously. Finally, the explicit symplectic geometric algorithm for the time-varying quaternion kinematical differential equation, i.e., a non-autonomous and non-linear Hamiltonian system essentially, is designed with the theorems proved. Our novel algorithms have simple structures, linear time complexity and constant space complexity of computation. The correctness and efficiencies of the proposed algorithms are verified and validated via numerical simulations.