In recent years,there has been a large amount of literature on missing data.Most of them focus on situations where there is only missingness in response or covariate.In this paper,we consider the adequacy check for th...In recent years,there has been a large amount of literature on missing data.Most of them focus on situations where there is only missingness in response or covariate.In this paper,we consider the adequacy check for the linear regression model with the response and covariates missing simultaneously.We apply model adjustment and inverse probability weighting methods to deal with the missingness of response and covariate,respectively.In order to avoid the curse of dimension,we propose an empirical process test with the linear indicator weighting function.The asymptotic properties of the proposed test under the null,local and global alternative hypothe tical models are rigorously investigated.A consisten t wild boot strap method is developed to approximate the critical value.Finally,simulation studies and real data analysis are performed to show that the proposed method performed well.展开更多
基金This research was supported by Key projects of philosophy and social science in Beijing(15ZDA47)National Natural Science Foundation of China(Grant Nos.11571340,11971045)Beijing Natural Science Foundation(1202001)and the Open Project of Key Laboratory of Big Data Mining and Knowledge Management,Chinese Academy of Sciences.
文摘In recent years,there has been a large amount of literature on missing data.Most of them focus on situations where there is only missingness in response or covariate.In this paper,we consider the adequacy check for the linear regression model with the response and covariates missing simultaneously.We apply model adjustment and inverse probability weighting methods to deal with the missingness of response and covariate,respectively.In order to avoid the curse of dimension,we propose an empirical process test with the linear indicator weighting function.The asymptotic properties of the proposed test under the null,local and global alternative hypothe tical models are rigorously investigated.A consisten t wild boot strap method is developed to approximate the critical value.Finally,simulation studies and real data analysis are performed to show that the proposed method performed well.