Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In partic...Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.展开更多
In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal...In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3-7mm). A Shack-Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086 A, where A is wavelength. The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (691p/m) is very close to the diffraction limit resolution. The carbon granule on the white paper which has a size of 4.7μm is seen clearly. The size of the retina cell is between 4 and 10 μm. So this system has an ability to image the human eye's retina.展开更多
The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration ...The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration capability and poor versatile of phase detection, the complexity of phase retrieval algorithm, we propose a new phase measurement principle and experimental methods of liquid crystal optical device. It is a phase measurement method based on the combination of phase- shifting interferometer and phase conjugation technology. The deflection characteristics of the liquid crystal device means the device can implement phase modulation to only one direction of polarized light while is completely transparent to orthogonal polarized light. We put forward the phase shift of the orthogonal polarization phase shift interferometer method, using phase shifting interference as well as the combination of phase conjugate means to achieve its phase measurement. So we can retrieves devices modulation phase simply and efficiently combines with phase- shifting interferometer technology.展开更多
This review provides a comprehensive overview of the various three-dimensional printing techniques for area exposure additive manufacturing using the patterned control of optical devices.Additive manufacturing techniq...This review provides a comprehensive overview of the various three-dimensional printing techniques for area exposure additive manufacturing using the patterned control of optical devices.Additive manufacturing techniques can be broadly categorized into low-power exposure and high-power melting,both of which involve innovative patterning and light-sourcing methods.The working principles and accompanying auxiliary devices of core technologies including the digital micromirror device,liquid crystal display,liquid crystal on silicon mask,and optically addressable light valve are summarized.The discussed techniques and devices have played critical roles in advancing both vat photopolymerization and powder bed fusion additive manufacturing processes and can be applied to markedly enhance printing efficiency.The advances discussed in this review hold significant promise in fields such as biomedicine,robotics,and sensing.The associated challenges and opportunities faced by the considered techniques and devices are summarized accordingly.展开更多
With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to im...With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with -8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.展开更多
This paper proposes a new Zernike modal gray map reconstruction algorithm used in the nematic liquid crystal adaptive optics system. Firstly, the new modal algorithm is described. Secondly, a single loop correction ex...This paper proposes a new Zernike modal gray map reconstruction algorithm used in the nematic liquid crystal adaptive optics system. Firstly, the new modal algorithm is described. Secondly, a single loop correction experiment was conducted, and it showed that the modal method has a higher precision in gray map reconstruction than the widely used slope method. Finally, the contrast close-loop correction experiment was conducted to correct static aberration in the laboratory. The experimental results showed that the average peak to valley (PV) and root mean square (RMS) of the wavefront corrected by mode method were reduced from 2.501A (λ= 633 nm) and 0.610A to 0.0334λ and 0.00845A, respectively. The corrected PV and RMS were much smaller than those of 0.173A and 0.048A by slope method. The Strehl ratio and modulation transfer function of the system corrected by mode method were much closer to diffraction limit than with slope method. These results indicate that the mode method can take good advantage of the large number of pixels of the liquid crystal corrector to realize high correction precision.展开更多
To meet the application need for agile precision beam steering, a novel liquid crystal prism device with a simple structure, convenient control, low cost and applicable performance is presented, and analysed theoretic...To meet the application need for agile precision beam steering, a novel liquid crystal prism device with a simple structure, convenient control, low cost and applicable performance is presented, and analysed theoretically and experimentally. The relationships between the optical path and the thickness of the liquid crystal cell under different voltages are investigated quantitatively by using a theoretical model. Analysis results show that the optical path profile of the liquid crystal prism has a quasi-linear slope and the standard deviation of the linear slope is less than 16 nm. The slope ratio can be changed by a voltage, which achieves the programmable beam steering and control. Practical liquid crystal prism devices are fabricated. Their deflection angles and wavefront profiles with different voltages are experimentally tested. The results are in good agreement with the simulated results. The results imply that the agile beam steering in a scope of 100μrad with a micro-rad resolution is substantiated in the device. The two-dimensional beam steering is also achieved by cascading two liquid crystal prism devices.展开更多
Polarized red, green, and blue light emitting diodes(LEDs) are successfully fabricated using polyfluorene and its derivatives, namely, poly(9,9-dioctylfluorene)(PFO), poly(9,9-dioctylfluorene-co-benzothiadiazole)(F8BT...Polarized red, green, and blue light emitting diodes(LEDs) are successfully fabricated using polyfluorene and its derivatives, namely, poly(9,9-dioctylfluorene)(PFO), poly(9,9-dioctylfluorene-co-benzothiadiazole)(F8BT),and poly(triphenylamine-co-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-co-benzo[c]thiadiazole-co-9,9-dioctyl-9 Hfluorene)(Red F).Rubbed hole transport layer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate)(PEDOT:PSS)is employed in the devices as the alignment layer to achieve fully monodomain alignment in all polymer layers.Red F is blended with F8BT to realize the polarized electroluminescence of red light(dichroic ratio ~3.3), despite having no liquid crystallinity itself.Comparing PFO/F8BT blend to F8BT, higher efficiency of polarized emission is found due to the energy transfer.All the polarized LEDs exhibit pronounced dichroism and efficient polarized emission compared to the non-alignment regular devices.展开更多
基金supports from National Natural Science Foundation of China (No.62235009).
文摘Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60578035, 50473040 and 60736042)the Science Foundation of Jilin Province, China (Grant Nos 20050520 and 20050321-2)
文摘In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3-7mm). A Shack-Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086 A, where A is wavelength. The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (691p/m) is very close to the diffraction limit resolution. The carbon granule on the white paper which has a size of 4.7μm is seen clearly. The size of the retina cell is between 4 and 10 μm. So this system has an ability to image the human eye's retina.
文摘The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration capability and poor versatile of phase detection, the complexity of phase retrieval algorithm, we propose a new phase measurement principle and experimental methods of liquid crystal optical device. It is a phase measurement method based on the combination of phase- shifting interferometer and phase conjugation technology. The deflection characteristics of the liquid crystal device means the device can implement phase modulation to only one direction of polarized light while is completely transparent to orthogonal polarized light. We put forward the phase shift of the orthogonal polarization phase shift interferometer method, using phase shifting interference as well as the combination of phase conjugate means to achieve its phase measurement. So we can retrieves devices modulation phase simply and efficiently combines with phase- shifting interferometer technology.
文摘This review provides a comprehensive overview of the various three-dimensional printing techniques for area exposure additive manufacturing using the patterned control of optical devices.Additive manufacturing techniques can be broadly categorized into low-power exposure and high-power melting,both of which involve innovative patterning and light-sourcing methods.The working principles and accompanying auxiliary devices of core technologies including the digital micromirror device,liquid crystal display,liquid crystal on silicon mask,and optically addressable light valve are summarized.The discussed techniques and devices have played critical roles in advancing both vat photopolymerization and powder bed fusion additive manufacturing processes and can be applied to markedly enhance printing efficiency.The advances discussed in this review hold significant promise in fields such as biomedicine,robotics,and sensing.The associated challenges and opportunities faced by the considered techniques and devices are summarized accordingly.
基金supported by the National Natural Science Foundation of China(Grant Nos.60736042,1174274,and 1174279)the Plan for Scientific and Technology Development of Suzhou,China(Grant No.ZXS201001)
文摘With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with -8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.
基金Project supported by the National Natural Science Foundation of China (Grants Nos.60736042,60578035 and 50703039)Science and Technology Cooperation Project between Chinese Academy of Sciences and Jilin Province (Grant No.2008SYHZ0005)
文摘This paper proposes a new Zernike modal gray map reconstruction algorithm used in the nematic liquid crystal adaptive optics system. Firstly, the new modal algorithm is described. Secondly, a single loop correction experiment was conducted, and it showed that the modal method has a higher precision in gray map reconstruction than the widely used slope method. Finally, the contrast close-loop correction experiment was conducted to correct static aberration in the laboratory. The experimental results showed that the average peak to valley (PV) and root mean square (RMS) of the wavefront corrected by mode method were reduced from 2.501A (λ= 633 nm) and 0.610A to 0.0334λ and 0.00845A, respectively. The corrected PV and RMS were much smaller than those of 0.173A and 0.048A by slope method. The Strehl ratio and modulation transfer function of the system corrected by mode method were much closer to diffraction limit than with slope method. These results indicate that the mode method can take good advantage of the large number of pixels of the liquid crystal corrector to realize high correction precision.
基金supported by the National High Technology Research and Development Program of China(Grant No.2009AA8042017)the Postdoctoral Science Foundation of University of Electronic Science and Technology of China
文摘To meet the application need for agile precision beam steering, a novel liquid crystal prism device with a simple structure, convenient control, low cost and applicable performance is presented, and analysed theoretically and experimentally. The relationships between the optical path and the thickness of the liquid crystal cell under different voltages are investigated quantitatively by using a theoretical model. Analysis results show that the optical path profile of the liquid crystal prism has a quasi-linear slope and the standard deviation of the linear slope is less than 16 nm. The slope ratio can be changed by a voltage, which achieves the programmable beam steering and control. Practical liquid crystal prism devices are fabricated. Their deflection angles and wavefront profiles with different voltages are experimentally tested. The results are in good agreement with the simulated results. The results imply that the agile beam steering in a scope of 100μrad with a micro-rad resolution is substantiated in the device. The two-dimensional beam steering is also achieved by cascading two liquid crystal prism devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874058,51861145301,and 61376023)the National Key Basic Research Program of China(Grant No.2015CB932203)+2 种基金China Postdoctoral Science Foundation(Grant No.2018M642283)the Synergetic Innovation Center for Organic Electronics and Information Displays,Chinathe Priority Academic Program Development Fund of Jiangsu Higher Education Institutions(PAPD)in China
文摘Polarized red, green, and blue light emitting diodes(LEDs) are successfully fabricated using polyfluorene and its derivatives, namely, poly(9,9-dioctylfluorene)(PFO), poly(9,9-dioctylfluorene-co-benzothiadiazole)(F8BT),and poly(triphenylamine-co-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-co-benzo[c]thiadiazole-co-9,9-dioctyl-9 Hfluorene)(Red F).Rubbed hole transport layer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate)(PEDOT:PSS)is employed in the devices as the alignment layer to achieve fully monodomain alignment in all polymer layers.Red F is blended with F8BT to realize the polarized electroluminescence of red light(dichroic ratio ~3.3), despite having no liquid crystallinity itself.Comparing PFO/F8BT blend to F8BT, higher efficiency of polarized emission is found due to the energy transfer.All the polarized LEDs exhibit pronounced dichroism and efficient polarized emission compared to the non-alignment regular devices.