针对城市道路车流量检测中车辆误分类问题,提出一种基于类锚虚拟线圈的多流向车流量检测算法。首先,采集车辆图像样本并随机裁剪以构建小客车、公交车和摩托车的均衡数据集,通过DBSCAN(Density-Based Spatial Clustering of Application...针对城市道路车流量检测中车辆误分类问题,提出一种基于类锚虚拟线圈的多流向车流量检测算法。首先,采集车辆图像样本并随机裁剪以构建小客车、公交车和摩托车的均衡数据集,通过DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法聚类获得3类车型的高度、宽度尺寸,以此校正场景车辆识别线圈尺寸,布设物体检测线圈与组合车辆识别线圈;其次,基于均衡数据集训练ResNet18卷积神经网络完成车辆类型判断;最后,采用改进的核相关滤波器追踪算法追踪车辆轨迹,通过计数线完成多流向车流量检测。验证分析表明:对单向车流,高峰、平峰正检率均值提升了5.09%、4.57%,误检率均值降低了5.31%、2.35%;多向车流中,直行车流的高峰、平峰正计率提升了5.01%、5.99%,左转车流的高峰、平峰正计率提升了4.29%、4.56%。展开更多
数字信号处理器(digital signal processor,DSP)通常采用超长指令字(very long instruction word,VLIW)和单指令多数据(single instruction multiple data,SIMD)的架构来提升处理器整体计算性能,从而适用于高性能计算、图像处理、嵌入...数字信号处理器(digital signal processor,DSP)通常采用超长指令字(very long instruction word,VLIW)和单指令多数据(single instruction multiple data,SIMD)的架构来提升处理器整体计算性能,从而适用于高性能计算、图像处理、嵌入式系统等各个领域.飞腾迈创数字处理器(FT-Matrix)作为国防科技大学自主研制的高性能通用数字信号处理器,其极致计算性能的体现依赖于对VLIW与SIMD架构特点的充分挖掘.不止是飞腾迈创系列,绝大多数处理器上高度优化的内核代码或核心库函数都依赖于底层汇编级工具或手工开发.然而,手工编写内核算子的开发方法总是需要大量的时间和人力开销来充分释放硬件的性能潜力.尤其是VLIW+SIMD的处理器,专家级汇编开发的难度更为突出.针对这些问题,提出一种面向飞腾迈创数字处理器的高性能的内核代码自动生成框架(automatic kernel code-generation framework on FT-Matrix),将飞腾迈创处理器的架构特性引入到多层次的内核代码优化方法中.该框架包括3层优化组件:自适应循环分块、标向量协同的自动向量化和细粒度的指令级优化.该框架可以根据硬件的内存层次结构和内核的数据布局自动搜索最优循环分块参数,并进一步引入标量-向量单元协同的自动向量化指令选择与数据排布,以提高内核代码执行时的数据复用和并行性.此外,该框架提供了类汇编的中间表示,以应用各种指令级优化来探索更多指令级并行性(ILP)的优化空间,同时也为其他硬件平台提供了后端快速接入和自适应代码生成的模块,以实现高效内核代码开发的敏捷设计.实验表明,该框架生成的内核基准测试代码的平均性能是目标-数字信号处理器(DSP)--的手工函数库的3.25倍,是使用普通向量C语言编写的内核代码的20.62倍.展开更多
文摘针对城市道路车流量检测中车辆误分类问题,提出一种基于类锚虚拟线圈的多流向车流量检测算法。首先,采集车辆图像样本并随机裁剪以构建小客车、公交车和摩托车的均衡数据集,通过DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法聚类获得3类车型的高度、宽度尺寸,以此校正场景车辆识别线圈尺寸,布设物体检测线圈与组合车辆识别线圈;其次,基于均衡数据集训练ResNet18卷积神经网络完成车辆类型判断;最后,采用改进的核相关滤波器追踪算法追踪车辆轨迹,通过计数线完成多流向车流量检测。验证分析表明:对单向车流,高峰、平峰正检率均值提升了5.09%、4.57%,误检率均值降低了5.31%、2.35%;多向车流中,直行车流的高峰、平峰正计率提升了5.01%、5.99%,左转车流的高峰、平峰正计率提升了4.29%、4.56%。
文摘数字信号处理器(digital signal processor,DSP)通常采用超长指令字(very long instruction word,VLIW)和单指令多数据(single instruction multiple data,SIMD)的架构来提升处理器整体计算性能,从而适用于高性能计算、图像处理、嵌入式系统等各个领域.飞腾迈创数字处理器(FT-Matrix)作为国防科技大学自主研制的高性能通用数字信号处理器,其极致计算性能的体现依赖于对VLIW与SIMD架构特点的充分挖掘.不止是飞腾迈创系列,绝大多数处理器上高度优化的内核代码或核心库函数都依赖于底层汇编级工具或手工开发.然而,手工编写内核算子的开发方法总是需要大量的时间和人力开销来充分释放硬件的性能潜力.尤其是VLIW+SIMD的处理器,专家级汇编开发的难度更为突出.针对这些问题,提出一种面向飞腾迈创数字处理器的高性能的内核代码自动生成框架(automatic kernel code-generation framework on FT-Matrix),将飞腾迈创处理器的架构特性引入到多层次的内核代码优化方法中.该框架包括3层优化组件:自适应循环分块、标向量协同的自动向量化和细粒度的指令级优化.该框架可以根据硬件的内存层次结构和内核的数据布局自动搜索最优循环分块参数,并进一步引入标量-向量单元协同的自动向量化指令选择与数据排布,以提高内核代码执行时的数据复用和并行性.此外,该框架提供了类汇编的中间表示,以应用各种指令级优化来探索更多指令级并行性(ILP)的优化空间,同时也为其他硬件平台提供了后端快速接入和自适应代码生成的模块,以实现高效内核代码开发的敏捷设计.实验表明,该框架生成的内核基准测试代码的平均性能是目标-数字信号处理器(DSP)--的手工函数库的3.25倍,是使用普通向量C语言编写的内核代码的20.62倍.