Based on the Maximum-Likelihood (ML) criterion, this paper proposes a novel noncoherent detection algorithm for Orthogonal Multicode (OM) system in Nakagami fading channel. Some theoretical analysis and simulation res...Based on the Maximum-Likelihood (ML) criterion, this paper proposes a novel noncoherent detection algorithm for Orthogonal Multicode (OM) system in Nakagami fading channel. Some theoretical analysis and simulation results are presented. It is shown that the proposed ML algorithm is at least 0.7 dB better than the conventional Matched-Filter (MF) algorithm for uncoded systems, in both non-fading and fading channels. For the consideration of practical application, it is further simplified in complexity. Compared with the original ML algorithm, the simplified ML algorithm can provide significant reduction in complexity with small degradation in performance.展开更多
This paper proposes an efficient approximate Maximum Likelihood (ML) detection method for Multiple-Input Multiple-Output (MIMO) systems,which searches local area instead of exhaustive search and selects valid search p...This paper proposes an efficient approximate Maximum Likelihood (ML) detection method for Multiple-Input Multiple-Output (MIMO) systems,which searches local area instead of exhaustive search and selects valid search points in each transmit antenna signal constellation instead of all hy-perplane. Both of the selection and search complexity can be reduced significantly. The method per-forms the tradeoff between computational complexity and system performance by adjusting the neighborhood size to select the valid search points. Simulation results show that the performance is comparable to that of the ML detection while the complexity is only as the small fraction of ML.展开更多
目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。...目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。采用了二元Middleton class A分布对MIMO PLC系统中噪声进行建模,提出了基于该噪声分布的最大似然检测改进算法,由于改进最大似然检测算法实现复杂度高,为了便于实现,进一步提出了用近似函数降低复杂度的2种次优的检测算法,优化了算法复杂度。仿真结果表明,与传统的基于高斯噪声分布的最大似然检测算法相比,提出的基于二元Middleton class A类噪声分布的信号检测算法在MIMO PLC系统能获得更好的性能。在性能损失较小的情况下,次优算法的复杂度明显低于最大似然检测改进算法。展开更多
该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空...该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空间进行运算,可以视作一种更为广义和灵活的方法,并且为不适定反问题的稀疏求解提供了改进的途径。较之于目前基于第1类最大似然(Type I ML)的稀疏方法,仿真实验证实了稀疏贝叶斯学习的优越性能。展开更多
文摘Based on the Maximum-Likelihood (ML) criterion, this paper proposes a novel noncoherent detection algorithm for Orthogonal Multicode (OM) system in Nakagami fading channel. Some theoretical analysis and simulation results are presented. It is shown that the proposed ML algorithm is at least 0.7 dB better than the conventional Matched-Filter (MF) algorithm for uncoded systems, in both non-fading and fading channels. For the consideration of practical application, it is further simplified in complexity. Compared with the original ML algorithm, the simplified ML algorithm can provide significant reduction in complexity with small degradation in performance.
文摘This paper proposes an efficient approximate Maximum Likelihood (ML) detection method for Multiple-Input Multiple-Output (MIMO) systems,which searches local area instead of exhaustive search and selects valid search points in each transmit antenna signal constellation instead of all hy-perplane. Both of the selection and search complexity can be reduced significantly. The method per-forms the tradeoff between computational complexity and system performance by adjusting the neighborhood size to select the valid search points. Simulation results show that the performance is comparable to that of the ML detection while the complexity is only as the small fraction of ML.
文摘目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。采用了二元Middleton class A分布对MIMO PLC系统中噪声进行建模,提出了基于该噪声分布的最大似然检测改进算法,由于改进最大似然检测算法实现复杂度高,为了便于实现,进一步提出了用近似函数降低复杂度的2种次优的检测算法,优化了算法复杂度。仿真结果表明,与传统的基于高斯噪声分布的最大似然检测算法相比,提出的基于二元Middleton class A类噪声分布的信号检测算法在MIMO PLC系统能获得更好的性能。在性能损失较小的情况下,次优算法的复杂度明显低于最大似然检测改进算法。
文摘该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空间进行运算,可以视作一种更为广义和灵活的方法,并且为不适定反问题的稀疏求解提供了改进的途径。较之于目前基于第1类最大似然(Type I ML)的稀疏方法,仿真实验证实了稀疏贝叶斯学习的优越性能。