Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic developm...The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic development.This study provides valuable insights into optimizing wireless communication,paving the way for a more connected and productive future in the mining industry.The IoT revolution is advancing across industries,but harsh geometric environments,including open-pit mines,pose unique challenges for reliable communication.The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency(RF)protocols such as Bluetooth,Wi-Fi,GSM/GPRS,Narrow Band(NB)-IoT,SigFox,ZigBee,and Long Range Wireless Area Network(LoRaWAN).This study addresses the optimization of network implementations by comparing two leading free-spreading IoT-based RF protocols such as ZigBee and LoRaWAN.Intensive field tests are conducted in various opencast mines to investigate coverage potential and signal attenuation.ZigBee is tested in the Tadicherla open-cast coal mine in India.Similarly,LoRaWAN field tests are conducted at one of the associated cement companies(ACC)in the limestone mine in Bargarh,India,covering both Indoor-toOutdoor(I2O)and Outdoor-to-Outdoor(O2O)environments.A robust framework of path-loss models,referred to as Free space,Egli,Okumura-Hata,Cost231-Hata and Ericsson models,combined with key performance metrics,is employed to evaluate the patterns of signal attenuation.Extensive field testing and careful data analysis revealed that the Egli model is the most consistent path-loss model for the ZigBee protocol in an I2O environment,with a coefficient of determination(R^(2))of 0.907,balanced error metrics such as Normalized Root Mean Square Error(NRMSE)of 0.030,Mean Square Error(MSE)of 4.950,Mean Absolute Percentage Error(MAPE)of 0.249 and Scatter Index(SI)of 2.723.In the O2O scenario,the Ericsson model showed superior performance,with the highest R^(2)value of 0.959,supported by strong correlation metrics:NRMSE of 0.026,MSE of 8.685,MAPE of 0.685,Mean Absolute Deviation(MAD)of 20.839 and SI of 2.194.For the LoRaWAN protocol,the Cost-231 model achieved the highest R^(2)value of 0.921 in the I2O scenario,complemented by the lowest metrics:NRMSE of 0.018,MSE of 1.324,MAPE of 0.217,MAD of 9.218 and SI of 1.238.In the O2O environment,the Okumura-Hata model achieved the highest R^(2)value of 0.978,indicating a strong fit with metrics NRMSE of 0.047,MSE of 27.807,MAPE of 27.494,MAD of 37.287 and SI of 3.927.This advancement in reliable communication networks promises to transform the opencast landscape into networked signal attenuation.These results support decision-making for mining needs and ensure reliable communications even in the face of formidable obstacles.展开更多
In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and imple...In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.展开更多
针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩...针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。展开更多
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original...In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better.展开更多
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ...In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters.展开更多
工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小...工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.展开更多
针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中最小均方误差(Minimum Mean Squared Error,MMSE)信道估计算法误码率(BER)高的问题,提出一种平均最小均方误差(Averaged-Minimum Mean Squared Error,A-MMSE)...针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中最小均方误差(Minimum Mean Squared Error,MMSE)信道估计算法误码率(BER)高的问题,提出一种平均最小均方误差(Averaged-Minimum Mean Squared Error,A-MMSE)信道估计算法。该算法首先基于802.11n标准而构造了一种新的导频结构,收发两端分别进行降采样和过采样处理,利用已知训练序列和导频获得信道频域响应。仿真结果表明,所提出的A-MMSE信道估计算法与传统的MMSE算法相比,在BER为10^(-3)时,信噪比改善了约8dB。因而所提出的信道估计算法能明显改善系统的BER性能。展开更多
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
文摘The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic development.This study provides valuable insights into optimizing wireless communication,paving the way for a more connected and productive future in the mining industry.The IoT revolution is advancing across industries,but harsh geometric environments,including open-pit mines,pose unique challenges for reliable communication.The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency(RF)protocols such as Bluetooth,Wi-Fi,GSM/GPRS,Narrow Band(NB)-IoT,SigFox,ZigBee,and Long Range Wireless Area Network(LoRaWAN).This study addresses the optimization of network implementations by comparing two leading free-spreading IoT-based RF protocols such as ZigBee and LoRaWAN.Intensive field tests are conducted in various opencast mines to investigate coverage potential and signal attenuation.ZigBee is tested in the Tadicherla open-cast coal mine in India.Similarly,LoRaWAN field tests are conducted at one of the associated cement companies(ACC)in the limestone mine in Bargarh,India,covering both Indoor-toOutdoor(I2O)and Outdoor-to-Outdoor(O2O)environments.A robust framework of path-loss models,referred to as Free space,Egli,Okumura-Hata,Cost231-Hata and Ericsson models,combined with key performance metrics,is employed to evaluate the patterns of signal attenuation.Extensive field testing and careful data analysis revealed that the Egli model is the most consistent path-loss model for the ZigBee protocol in an I2O environment,with a coefficient of determination(R^(2))of 0.907,balanced error metrics such as Normalized Root Mean Square Error(NRMSE)of 0.030,Mean Square Error(MSE)of 4.950,Mean Absolute Percentage Error(MAPE)of 0.249 and Scatter Index(SI)of 2.723.In the O2O scenario,the Ericsson model showed superior performance,with the highest R^(2)value of 0.959,supported by strong correlation metrics:NRMSE of 0.026,MSE of 8.685,MAPE of 0.685,Mean Absolute Deviation(MAD)of 20.839 and SI of 2.194.For the LoRaWAN protocol,the Cost-231 model achieved the highest R^(2)value of 0.921 in the I2O scenario,complemented by the lowest metrics:NRMSE of 0.018,MSE of 1.324,MAPE of 0.217,MAD of 9.218 and SI of 1.238.In the O2O environment,the Okumura-Hata model achieved the highest R^(2)value of 0.978,indicating a strong fit with metrics NRMSE of 0.047,MSE of 27.807,MAPE of 27.494,MAD of 37.287 and SI of 3.927.This advancement in reliable communication networks promises to transform the opencast landscape into networked signal attenuation.These results support decision-making for mining needs and ensure reliable communications even in the face of formidable obstacles.
文摘In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.
文摘针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。
基金The NSF(11271155) of ChinaResearch Fund(20070183023) for the Doctoral Program of Higher Education
文摘In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better.
文摘In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters.
文摘工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.
文摘针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中最小均方误差(Minimum Mean Squared Error,MMSE)信道估计算法误码率(BER)高的问题,提出一种平均最小均方误差(Averaged-Minimum Mean Squared Error,A-MMSE)信道估计算法。该算法首先基于802.11n标准而构造了一种新的导频结构,收发两端分别进行降采样和过采样处理,利用已知训练序列和导频获得信道频域响应。仿真结果表明,所提出的A-MMSE信道估计算法与传统的MMSE算法相比,在BER为10^(-3)时,信噪比改善了约8dB。因而所提出的信道估计算法能明显改善系统的BER性能。
文摘针对无线传感网络中传统DV-Hop(Distance Vector Hop)定位算法节点分布不均匀导致定位误差较大的问题,提出了非均匀网络中半径可调的ARDV-Hop(Adjustable Radius DV-Hop in Non-uniform Networks)定位算法。该算法通过半径可调的方式对节点间的跳数进行细化,用细化后呈小数级的跳数代替传统的整数级跳数,并建立了数据能量消耗模型,优化了网络传输性能。ARDV-Hop算法还针对节点分布不均匀的区域提出跳距优化算法:在节点密度大的区域,采用余弦定理优化跳距;密度小的区域,采用最小均方误差(Least Mean Square,LMS)来修正跳距。仿真实验表明,在同等网络环境下,与传统DV-Hop算法、GDV-Hop算法和WOA-DV-Hop算法相比,ARDV-Hop算法能更有效地降低定位误差.