In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed i...In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions.展开更多
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff...To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.展开更多
基金Research Committee,National Technical University of Athens。
文摘In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions.
基金supported by the National Natural Science Foundation of China (60902055)
文摘To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.