期刊文献+
共找到1,286篇文章
< 1 2 65 >
每页显示 20 50 100
Anomaly-Resistant Decentralized State Estimation Under Minimum Error Entropy With Fiducial Points for Wide-Area Power Systems
1
作者 Bogang Qu Zidong Wang +2 位作者 Bo Shen Hongli Dong Hongjian Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期74-87,共14页
This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines... This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme. 展开更多
关键词 Decentralized state estimation(SE) measurements with anomalies minimum error entropy unscented Kalman filter wide-area power systems
在线阅读 下载PDF
Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration 被引量:3
2
作者 Lujuan Dang Badong Chen +2 位作者 Yulong Huang Yonggang Zhang Haiquan Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第3期450-465,共16页
Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es... Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises. 展开更多
关键词 Cubature Kalman filter(CKF) inertial navigation system(INS)/global positioning system(GPS)integration minimum error entropy with fiducial points(MEEF) non-Gaussian noise
在线阅读 下载PDF
NEW APPROACH FOR RELIABILITY-BASED DESIGN OPTIMIZATION:MINIMUM ERROR POINT 被引量:5
3
作者 LIU Deshun YUE Wenhui +1 位作者 ZHU Pingyu DU Xiaoping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期514-518,共5页
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th... Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions. 展开更多
关键词 Reliability Most probable point (MPP) minimum error point (MEP)Reliability-based design optimization (RBDO)
在线阅读 下载PDF
A New Regularized Minimum Error Thresholding Method
4
作者 王保平 张研 +1 位作者 王晓田 吴成茂 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期355-364,共10页
To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfactory image segmentation results only when the object and background of the image strictly obey a certain type of proba... To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfactory image segmentation results only when the object and background of the image strictly obey a certain type of probability distribution,one proposes the regularized minimum error threshold method and treats the traditional minimum error threshold method as its special case.Then one constructs the discrete probability distribution by using the separation between segmentation threshold and the average gray-scale values of the object and background of the image so as to compute the information energy of the probability distribution.The impact of the regularized parameter selection on the optimal segmentation threshold of the regularized minimum error threshold method is investigated.To verify the effectiveness of the proposed regularized minimum error threshold method,one selects typical grey-scale images and performs segmentation tests.The segmentation results obtained by the regularized minimum error threshold method are compared with those obtained with the traditional minimum error threshold method.The segmentation results and their analysis show that the regularized minimum error threshold method is feasible and produces more satisfactory segmentation results than the minimum error threshold method.It does not exert much impact on object acquisition in case of the addition of a certain noise to an image.Therefore,the method can meet the requirements for extracting a real object in the noisy environment. 展开更多
关键词 image processing image segmentation regularized minimum error threshold method informational divergence segmentation threshold
在线阅读 下载PDF
RAYLEIGH-DISTRIBUTION BASED MINIMUM ERROR THRESHOLDING FOR SAR IMAGES
5
作者 Xue Jinghao Zhang Yujin Lin Xinggang (Department of Electronic Engineering, Tsinghua University, Beijing 100084) 《Journal of Electronics(China)》 1999年第4期336-342,共7页
This paper presents a minimum error thresholding (MET) algorithm under the hypothesis that the gray level histogram of SAR image fits to a mixture model of shifted Rayleigh distribution. This algorithm is applied to r... This paper presents a minimum error thresholding (MET) algorithm under the hypothesis that the gray level histogram of SAR image fits to a mixture model of shifted Rayleigh distribution. This algorithm is applied to real SAR images and compared with traditional Otsu algorithm and other MET algorithms based on various models of histogram. The hypothesis of using Rayleigh distribution model is confirmed by Kolmogorov-Smirnov testing and the comparison results obtained show that the proposed new algorithm has good performance in thresholding SAR images. 展开更多
关键词 SAR image RAYLEIGH DISTRIBUTION minimum error THRESHOLDING (MET) KOLMOGOROV-SMIRNOV testing
在线阅读 下载PDF
Enhanced kernel minimum squared error algorithm and its application in face recognition
6
作者 赵英男 何祥健 +1 位作者 陈北京 赵晓平 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期35-38,共4页
To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label ... To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix.Compared with the common methods, the newobjective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE,some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification( CRC). 展开更多
关键词 minimum squared error kernel minimum squared error pattern recognition face recognition
在线阅读 下载PDF
Low Complexity Minimum Mean Square Error Channel Estimation for Adaptive Coding and Modulation Systems 被引量:2
7
作者 GUO Shuxia SONG Yang +1 位作者 GAO Ying HAN Qianjin 《China Communications》 SCIE CSCD 2014年第1期126-137,共12页
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio... Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances. 展开更多
关键词 adaptive coding and modulation channel estimation minimum mean square error low-complexity minimum mean square error
在线阅读 下载PDF
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
8
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 minimum model error Weighted least squares method State estimation Invariant embedding method Nonlinear recursive estimate
在线阅读 下载PDF
Analysis of Sampling Error Uncertainties and Trends in Maximum and Minimum Temperatures in China 被引量:2
9
作者 HUA Wei Samuel S.P.SHEN WANG Huijun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期263-272,共10页
In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized ... In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized and original data collected at 731 meteorological stations across China for the period 1951-2004.Uncertainties of the gridded data and national average,linear trends and their uncertainties,as well as the homogenization effect on uncertainties are assessed.It is shown that the sampling error variances of homogenized Tmax and Tmin,which are larger in winter than in summer,have a marked northwest-southeast gradient distribution,while the sampling error variances of the original data are found to be larger and irregular.Tmax and Tmin increase in all months of the year in the study period 1951-2004,with the largest warming and uncertainties being 0.400℃ (10 yr)-1 + 0.269℃ (10 yr)-1 and 0.578℃ (10 yr)-1 + 0.211℃ (10 yr)-1 in February,and the least being 0.022℃ (10 yr)-1 + 0.085℃ (10 yr)-1 and 0.104℃ (10 yr)-1 +0.070℃ (10 yr)-1 in August.Homogenization can remove large uncertainties in the original records resulting from various non-natural changes in China. 展开更多
关键词 sampling error uncertainty maximum temperature minimum temperature temperature trend
在线阅读 下载PDF
Roundness error evaluation by minimum zone circle via microscope inspection
10
作者 姜黎 张之敬 +2 位作者 吴伟仁 金鑫 节德刚 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期185-190,共6页
Utilizing the convex hull theory, a novel minimum zone circle (MZC) method, named im- proved minimum zone circle (IMZC) was developed in this paper. There were three steps for IMZC to evaluate the roundness error.... Utilizing the convex hull theory, a novel minimum zone circle (MZC) method, named im- proved minimum zone circle (IMZC) was developed in this paper. There were three steps for IMZC to evaluate the roundness error. Firstly, with the convex hull algorithm, data points on the circle contour were categorized into two sets to determine two concentric circles which contained all points of the contour. Secondly, vertexes of the minimum circumscribed circle and the maximum inscribed circle were found out from the previously determined two sets, and then four tangent points for de- termining the two concentric circles were also found out. Lastly, according to the evaluation using the MZC method, the roundness error was figured out. In this paper l IMZC was used to evaluate roundness errors of some micro parts. The evaluation results showed that the measurement precision using the IMZC method was higher than the least squared circle (LSC) method for the same set of data points, and IMZC had the same accuracy as the traditional MZC but dramatically shortened com- putation time. The computation time of IMZC was 6. 89% of the traditional MZC. 展开更多
关键词 microscope inspection roundness error minimum zone circle (MZC) convex hull
在线阅读 下载PDF
一种低复杂度的OTFS系统信号检测算法
11
作者 陈发堂 陈甲杰 +1 位作者 夏麒煜 黄梁 《电讯技术》 北大核心 2025年第2期205-213,共9页
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系... 针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。 展开更多
关键词 正交时频空(OTFS) 信号检测 最小均方误差均衡 三角分解
在线阅读 下载PDF
Lower bound on BER performance for maximal ratio combining with weighting errors 被引量:1
12
作者 盛彬 尤肖虎 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期379-384,共6页
The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b... The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases. 展开更多
关键词 lower bound bit error rate minimum mean-square error channel estimation maximal ratio combining
在线阅读 下载PDF
高速移动环境下OTSMB-LMMSE-PIC迭代检测方法
13
作者 李国军 郑翔 王杰 《通信学报》 北大核心 2025年第1期13-22,共10页
为提升正交时序复用(OTSM)在高速移动环境下传输的可靠性,提出了一种基于并行干扰消除的分块线性最小均方误差(B-LMMSE-PIC)迭代检测方法。该方法在时域分块进行MMSE-PIC符号估计,并且使用诺伊曼(Neumann)级数逼近涉及的矩阵反演,将计... 为提升正交时序复用(OTSM)在高速移动环境下传输的可靠性,提出了一种基于并行干扰消除的分块线性最小均方误差(B-LMMSE-PIC)迭代检测方法。该方法在时域分块进行MMSE-PIC符号估计,并且使用诺伊曼(Neumann)级数逼近涉及的矩阵反演,将计算复杂度降为线性阶;随后在时延-序列域计算估计符号的均值与方差作为下一次迭代的先验信息。仿真结果表明,在移动速度为540km/h的场景下使用16QAM调制且误码率为10-4时,所提方法与目前广泛使用的基于最大比合并(MRC)的迭代rake检测方法相比有2.48dB的性能增益。 展开更多
关键词 正交时序复用 线性最小均方误差 并行干扰消除 诺伊曼级数
在线阅读 下载PDF
一种基于ZP-OTFS的低复杂度SSOR检测算法
14
作者 何茂恒 张薇 《电讯技术》 北大核心 2025年第2期223-230,共8页
针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩... 针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。 展开更多
关键词 ZP-OTFS 线性最小均方误差(LMMSE) 信号检测 SSOR迭代检测
在线阅读 下载PDF
威布尔分布下加速退化试验的MRE-ADT优化设计
15
作者 齐洋 锁斌 《电光与控制》 北大核心 2025年第2期79-85,共7页
针对大多数加速退化试验优化设计没有考虑不同样本量规模引起的认知不确定性影响试验结果的问题,提出了一种威布尔分布下的加速退化试验优化设计新方法。构建了偏差度指标,用于刻画不同样本量引起的认知不确定性,以此为基础建立了以最... 针对大多数加速退化试验优化设计没有考虑不同样本量规模引起的认知不确定性影响试验结果的问题,提出了一种威布尔分布下的加速退化试验优化设计新方法。构建了偏差度指标,用于刻画不同样本量引起的认知不确定性,以此为基础建立了以最小相对误差(MRE)为目标的加速退化试验优化设计模型,该模型以总样本量、加速应力水平数、样本分配占比为设计变量,给出了最优化模型的求解算法,并将所提出的方法应用于某激光器的加速退化试验优化设计,结果证明了该方法的有效性。 展开更多
关键词 加速退化试验 优化设计 最小相对误差
在线阅读 下载PDF
MIMO场景下最小误差检测
16
作者 许天一 邹辉 《科技创新与应用》 2025年第6期43-47,共5页
该文研究多输入多输出(Multiple-Input Multiple-Output,MIMO)场景下的最小均方误差(MMSE)检测方法,旨在提升无线通信系统中的信号检测性能。通过仿真实验,在不同收发天线配置、发射功率和发送符号数量下,对正交相移键控(QPSK)和正交幅... 该文研究多输入多输出(Multiple-Input Multiple-Output,MIMO)场景下的最小均方误差(MMSE)检测方法,旨在提升无线通信系统中的信号检测性能。通过仿真实验,在不同收发天线配置、发射功率和发送符号数量下,对正交相移键控(QPSK)和正交幅度调制(16QAM)进行性能分析。结果表明,随着信噪比的增加,误码率逐渐降低;增加天线数量可以降低误码率,但需要平衡硬件复杂度与性能。在相同信噪比下,QPSK的误码率低于16QAM,且MMSE-ML联合检测方法优于单独的MMSE检测方法。该研究可为优化MIMO系统中的信号检测方法提供新的视角和参考。 展开更多
关键词 多输入多输出 正交相移键控 正交幅度调制 最小误差检测 最大似然检测
在线阅读 下载PDF
大规模MIMO系统中基于预处理的Richardson算法
17
作者 冯姣 刘思晴 《计算机与数字工程》 2025年第1期5-10,共6页
最小均方误差(Minimum Mean Square Error,MMSE)检测算法是大规模多输入多输出(massive MIMO)系统中能够实现接近最优检测性能的一种算法,但包含对高维矩阵的求逆运算,复杂度较高,因此不适合应用在实际工程中。针对这一问题,文章基于矩... 最小均方误差(Minimum Mean Square Error,MMSE)检测算法是大规模多输入多输出(massive MIMO)系统中能够实现接近最优检测性能的一种算法,但包含对高维矩阵的求逆运算,复杂度较高,因此不适合应用在实际工程中。针对这一问题,文章基于矩阵分块思想和理查德森(Richardson,RI)算法,提出了一种预处理的理查德森(Pretreatment-Richardson,P-RI)迭代算法,该算法首先基于矩阵分块思想构造了一种新形式的线性迭代,然后用此线性迭代对理查德森算法进行预处理,有效提升了算法的收敛速度。实验结果显示,与现有的RI算法相比,该算法的检测性能更好。 展开更多
关键词 massive MIMO 最小均方误差算法 矩阵分块 预处理 理查德森算法
在线阅读 下载PDF
三种基于统计模型的单通道语音增强改进算法
18
作者 涂井先 覃桂茳 《宁德师范学院学报(自然科学版)》 2025年第1期17-22,44,共7页
针对算法计算复杂度高的问题,提出三种基于统计模型的单通道语音增强改进算法。利用每帧信号相邻多个频点共享相同增益函数的策略,达到降低算法计算复杂度的目的,并给出三种算法处理每帧信号乘除法运算次数关于共享频点个数的表格和函... 针对算法计算复杂度高的问题,提出三种基于统计模型的单通道语音增强改进算法。利用每帧信号相邻多个频点共享相同增益函数的策略,达到降低算法计算复杂度的目的,并给出三种算法处理每帧信号乘除法运算次数关于共享频点个数的表格和函数图。最后,选用三种经典的客观评价指标在Noizeus语料库和Noisex噪声库上进行测试。实验结果表明:当共享频点个数从1逐渐增大到10时,三种算法的计算复杂度呈现明显降低趋势,三种算法的去噪性能多数情况下会呈现缓慢降低的趋势。因此,三种算法以略微降低去噪性能为代价降低了算法的计算复杂度。 展开更多
关键词 语音增强 统计模型 计算复杂度 最小均方误差估计
在线阅读 下载PDF
基于非局部均值与线性最小均方误差估计的MRI去噪研究
19
作者 吴娟 荆斌 +2 位作者 荆钧尧 吴斌 孙娜娜 《中国医疗设备》 2025年第2期35-39,66,共6页
目的提出一种针对磁共振成像(Magnetic Resonance Imaging,MRI)图像的Rician噪声去除算法。方法首先利用局部方差统计估计MRI的噪声水平,接着采用线性最小均方误差估计及非局部均值滤波方法对图像进行复原,再根据估计的图像噪声水平决... 目的提出一种针对磁共振成像(Magnetic Resonance Imaging,MRI)图像的Rician噪声去除算法。方法首先利用局部方差统计估计MRI的噪声水平,接着采用线性最小均方误差估计及非局部均值滤波方法对图像进行复原,再根据估计的图像噪声水平决定是否进行迭代去噪。结果利用模拟的大脑MRI对提出的去噪方法进行定性与定量验证。结果显示,去噪算法在噪声方差为15时,不同切片的均方误差、峰值信噪比与信噪比平均值依次为70.07、29.78 dB、21.95 dB,非局部均值滤波的结果依次为82.17、29.11 dB、21.28 dB,而线性最小均方误差估计的结果依次为108.16、27.80dB、19.97dB,可以看出本文提出的算法优于其他算法。相比传统的非局部均值滤波,本文提出的算法在边缘等信息保护方面也有一定提高,同时提高了线性最小均方误差估计在高噪声水平时的去噪效果。结论本文提出的算法能够有效实现含噪MRI信号的复原,为后续图像处理及应用提供可靠保证。 展开更多
关键词 磁共振成像(MRI) 去噪 非局部均值 线性最小均方误差 Rician噪声 自适应 迭代
在线阅读 下载PDF
杉木砂光粉尘爆炸最小点火能预测模型
20
作者 李时维 喻孜 +2 位作者 颜振东 刘海良 周捍东 《林业工程学报》 北大核心 2025年第2期60-66,共7页
旨在开发一个基于XGBoost(极端梯度提升)算法的杉木砂光粉最小点火能(MIE)预测模型,采用XGBoost技术对多个影响因素如粉尘质量浓度、含水率、喷射压力和比表面积径等进行综合分析,构建杉木砂光粉MIE的预测模型,并使用R^(2)、MAE、RMSE、... 旨在开发一个基于XGBoost(极端梯度提升)算法的杉木砂光粉最小点火能(MIE)预测模型,采用XGBoost技术对多个影响因素如粉尘质量浓度、含水率、喷射压力和比表面积径等进行综合分析,构建杉木砂光粉MIE的预测模型,并使用R^(2)、MAE、RMSE、MAD和MAPE 5个评价指标来综合评价模型的整体性能和该模型对各因素的权重。结果表明:在杉木砂光粉MIE预测模型研究中,此模型在训练集和测试集上的R^(2)分别为0.99961和0.96905,展现了高度的预测准确性。对于MIE上限的预测,模型在训练集和测试集的R^(2)分别为0.99971和0.98638,进一步证实了其有效性。在误差分析中,MAE、RMSE、MAD和MAPE均表现出模型在训练集上的高预测精度,且研究中较低的MAPE值表明模型预测与实际值之间的百分比误差较小,说明模型在泛化能力上表现良好。使用XGBoost模型对各因素权重分析表明,粉尘质量浓度是对MIE预测影响最大的因素。通过XGBoost模型的应用,不仅为杉木砂光粉MIE的预测提供了新视角,同时也为木材加工行业促进生产过程的安全管理提供了一种有效的风险评估工具。 展开更多
关键词 杉木粉尘 最小点火能 预测模型 XGBoost 误差分析
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部