This paper presents results on the combustion of syngas fuel in re-circulating vortex combustor. The combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated ...This paper presents results on the combustion of syngas fuel in re-circulating vortex combustor. The combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel-air stream. CFD (computational fluid dynamics) analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor using synthetic gas or syngas fuel produced from the gasification process. The flame temperature, the flow field and species concentrations inside the vortex trapped combustor were obtained. Several syngas fuels with different fuel compositions (H2, CO, CH4, CO2, N2 and H20) and lower heating values were tested in this study. The changes on the flame temperature and species concentrations inside the combustor, the emissions of NOx, CO, CO2 at the exit of the combustor, the combustor efficiency and the total pressure drop for syngas fuels are presented in this paper. The effect of H2/CO ratio and the mass fraction of each constituent of syngas fuels and hydrogen-methane fuel mixtures on the combustion and emissions performances were investigated.展开更多
混合分数概率密度函数(probability density function,PDF)反映了湍流对燃料和氧化剂混合过程的影响,在湍流非预混燃烧的理论研究和数值模拟中有非常重要的作用。该文基于大涡模拟(large eddy simulation,LES)对非预混火焰中的混合分数...混合分数概率密度函数(probability density function,PDF)反映了湍流对燃料和氧化剂混合过程的影响,在湍流非预混燃烧的理论研究和数值模拟中有非常重要的作用。该文基于大涡模拟(large eddy simulation,LES)对非预混火焰中的混合分数PDF进行了研究。利用LES预测的SandiaFlame D的速度和温度的均值和均方根分布与实验结果符合很好,瞬态温度场显示了合理的湍流火焰形态。混合分数PDF在反应区为钟形分布,在贫燃侧和富燃侧为钟形分布或单调形分布,取决于当地流场状态。对简化PDF模型的研究表明:β函数模型对钟形PDF和单调形PDF的预测效果都很好;截尾Gauss函数模型只能较好地预测钟形分布PDF;多点δ函数模型的预测能力与截尾Gauss函数模型的预测能力类似;双δ函数模型的预测结果偏差较大。展开更多
文摘This paper presents results on the combustion of syngas fuel in re-circulating vortex combustor. The combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel-air stream. CFD (computational fluid dynamics) analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor using synthetic gas or syngas fuel produced from the gasification process. The flame temperature, the flow field and species concentrations inside the vortex trapped combustor were obtained. Several syngas fuels with different fuel compositions (H2, CO, CH4, CO2, N2 and H20) and lower heating values were tested in this study. The changes on the flame temperature and species concentrations inside the combustor, the emissions of NOx, CO, CO2 at the exit of the combustor, the combustor efficiency and the total pressure drop for syngas fuels are presented in this paper. The effect of H2/CO ratio and the mass fraction of each constituent of syngas fuels and hydrogen-methane fuel mixtures on the combustion and emissions performances were investigated.