Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and s...Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality.Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon,nitrogen and water fluxes within agro-ecosystems on the national scale.In this study,we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations(AMSs)across China.The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer(MODIS)time series data with a 500 m spatial resolution and an 8-day temporal resolution.According to the MODIS-derived multiple cropping distribution in 2002,the proportion of cropland cultivated with multiple crops reached 34%in China.Double-cropping accounted for approximately 94.6%and triple-cropping for 5.4%.The results demonstrat that MODIS EVI(Enhanced Vegetation Index)time series data have the capability and potential to delineate the dynamics of double-and triple-cropping practices.The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.展开更多
Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this stud...Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this study, a practical model of sea ice thickness(PMSIT) was proposed based on the Moderate Resolution Imaging Spectroradiometer(MODIS) data. In the proposed model, the MODIS data of the first band were used to estimate sea ice thickness and the difference between the second-band reflectance and the fifth-band reflectance in the MODIS data was calculated to obtain the difference attenuation index(DAI) of each pixel. The obtained DAI was used to estimate the integrated attenuation coefficient of the first band of the MODIS at the pixel level. Then the model was used to estimate sea ice thickness in the Bohai Sea with the MODIS data and then validated with the actual sea ice survey data. The validation results showed that the proposed model and corresponding parameterization scheme could largely avoid the estimation error of sea ice thickness caused by the spatial and temporal heterogeneity of sea ice extinction and allowed the error of 18.7% compared with the measured sea ice thickness.展开更多
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05050602)Major State Basic Research Development Program of China(No.2010CB950904)+1 种基金National Natural Science Foundation of China(No.40921140410,41071344)Land Cover and Land Use Change Program of National Aeronautics and Space Administration,USA(No.NAG5-11160,NNG05GH80G)
文摘Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality.Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon,nitrogen and water fluxes within agro-ecosystems on the national scale.In this study,we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations(AMSs)across China.The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer(MODIS)time series data with a 500 m spatial resolution and an 8-day temporal resolution.According to the MODIS-derived multiple cropping distribution in 2002,the proportion of cropland cultivated with multiple crops reached 34%in China.Double-cropping accounted for approximately 94.6%and triple-cropping for 5.4%.The results demonstrat that MODIS EVI(Enhanced Vegetation Index)time series data have the capability and potential to delineate the dynamics of double-and triple-cropping practices.The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.
基金Under the auspices of the National Natural Science Foundation of China(No.41306091)Public Science and Technology Research Funds Projects of Ocean(No.201505019-2)
文摘Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this study, a practical model of sea ice thickness(PMSIT) was proposed based on the Moderate Resolution Imaging Spectroradiometer(MODIS) data. In the proposed model, the MODIS data of the first band were used to estimate sea ice thickness and the difference between the second-band reflectance and the fifth-band reflectance in the MODIS data was calculated to obtain the difference attenuation index(DAI) of each pixel. The obtained DAI was used to estimate the integrated attenuation coefficient of the first band of the MODIS at the pixel level. Then the model was used to estimate sea ice thickness in the Bohai Sea with the MODIS data and then validated with the actual sea ice survey data. The validation results showed that the proposed model and corresponding parameterization scheme could largely avoid the estimation error of sea ice thickness caused by the spatial and temporal heterogeneity of sea ice extinction and allowed the error of 18.7% compared with the measured sea ice thickness.