We study the following modified transitional Korteweg-de Vries equation ut+f(t)upux+uxxx=0, (x,t)∈R+×R+, (p≥2is an even integer) with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t...We study the following modified transitional Korteweg-de Vries equation ut+f(t)upux+uxxx=0, (x,t)∈R+×R+, (p≥2is an even integer) with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either (i) f(t)≤0, f′(t)≥0or (ii) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
Some superconvergence results of generalized difference solution for elliptic boundary value problem are given. It is shown that optimal points of the stresses for generalized difference method are the same as that fo...Some superconvergence results of generalized difference solution for elliptic boundary value problem are given. It is shown that optimal points of the stresses for generalized difference method are the same as that for finite element method.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of partic...In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of particular solutions of the biharmonic equations in the polar coordinate system. Three examples are presented to show the stability and high convergence rate of the method.展开更多
A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an ...A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an adjustable high order for the functions over a bounded interval, which allows the expansion coefficients to be explicitly expressed by the function values at a series of single points. When the solution method is used, the nonlinear initial boundary value problems are first spatially discretized into a series of nonlinear initial value problems by combining the proposed wavelet approximation and the conventional Galerkin method, and a novel high-order step-by-step time integrating approach is then developed for the resulting nonlinear initial value problems with the same function approximation scheme based on the wavelet theory. The solution method is shown to have the N th-order accuracy, as long as the Coiflet with [0, 3 N-1]compact support is adopted, where N can be any positive even number. Typical examples in mechanics are considered to justify the accuracy and efficiency of the method.展开更多
Monotone sequences are constructed that converge to the ex tremal solutions of second order three point boundary value problems when the functions involved do not possess any monotone properties.
By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution ...By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis.展开更多
In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions de...In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order derivatives. The numerical results obtained with a small amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the decomposition method is of high accuracy, more convenient and efficient for solving high-order boundary value problems.展开更多
Several available methods, known in literatures, are available for solving nth order differential equations and their complexities differ based on the accuracy of the solution. A successful method, known to researcher...Several available methods, known in literatures, are available for solving nth order differential equations and their complexities differ based on the accuracy of the solution. A successful method, known to researcher in the area of computational electromagnetic and called the Method of Moment (MoM) is found to have its way in this domain and can be used in solving boundary value problems where differential equations are resulting. A simplified version of this method is adopted in this paper to address this problem, and two differential equations examples are considered to clarify the approach and present the simplicity of the method. As illustrated in this paper, this approach can be introduced along with other methods, and can be considered as an attractive way to solve differential equations and other boundary value problems.展开更多
Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet ...Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.展开更多
This paper presents the use of differential transformation method (DTM), an approximating technique for solving linear higher order boundary value problems. Using DTM, approximate solutions of order seven and eight bo...This paper presents the use of differential transformation method (DTM), an approximating technique for solving linear higher order boundary value problems. Using DTM, approximate solutions of order seven and eight boundary value problems were developed. Approximate results are given for some examples to illustrate the efficiency and accuracy of the method. The results from this method are compared with the exact solutions.展开更多
The purpose of this paper is to employ the Adomian Decomposition Method (ADM) and Restarted Adomian Decomposition Method (RADM) with new useful techniques to resolve Bratu’s boundary value problem by using a new inte...The purpose of this paper is to employ the Adomian Decomposition Method (ADM) and Restarted Adomian Decomposition Method (RADM) with new useful techniques to resolve Bratu’s boundary value problem by using a new integral operator. The solutions obtained in this way require the use of the boundary conditions directly. The obtained results indicate that the new techniques give more suitable and accurate solutions for the Bratu-type problem, compared with those for the ADM and its modification.展开更多
In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the proble...In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the problem. The effectiveness of the each modified is verified by several examples.展开更多
We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The ac...We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.展开更多
We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of ord...We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value problem. We obtain Septic B-Spline formulation and the Collocation B-spline method is formulated as an approximation solution. We apply the presented method to solve an example of seventh order boundary value problem in which the result shows that there is an agreement between approximate solutions and exact solutions. Resulting in low absolute errors shows that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.展开更多
This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the ...This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the scheme, numerical simulation for the weak entropy solution to the initial-boundary value problem of scalar conservation laws is conducted.展开更多
文摘We study the following modified transitional Korteweg-de Vries equation ut+f(t)upux+uxxx=0, (x,t)∈R+×R+, (p≥2is an even integer) with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either (i) f(t)≤0, f′(t)≥0or (ii) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金This work is supported by the Foundatiorl of Zhongshan University Advanced Research Centre
文摘Some superconvergence results of generalized difference solution for elliptic boundary value problem are given. It is shown that optimal points of the stresses for generalized difference method are the same as that for finite element method.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
基金Partially Supported by the National Natural Science Foundation of China
文摘In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of particular solutions of the biharmonic equations in the polar coordinate system. Three examples are presented to show the stability and high convergence rate of the method.
基金Project supported by the National Natural Science Foundation of China(No.11472119)the Fundamental Research Funds for the Central Universities(No.lzujbky-2017-ot11)the 111 Project(No.B14044)
文摘A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an adjustable high order for the functions over a bounded interval, which allows the expansion coefficients to be explicitly expressed by the function values at a series of single points. When the solution method is used, the nonlinear initial boundary value problems are first spatially discretized into a series of nonlinear initial value problems by combining the proposed wavelet approximation and the conventional Galerkin method, and a novel high-order step-by-step time integrating approach is then developed for the resulting nonlinear initial value problems with the same function approximation scheme based on the wavelet theory. The solution method is shown to have the N th-order accuracy, as long as the Coiflet with [0, 3 N-1]compact support is adopted, where N can be any positive even number. Typical examples in mechanics are considered to justify the accuracy and efficiency of the method.
文摘Monotone sequences are constructed that converge to the ex tremal solutions of second order three point boundary value problems when the functions involved do not possess any monotone properties.
基金Supported by the National Natural Science Foundation of Chinathe Doctoral Training of the State Education Commission of China
文摘By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis.
文摘In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order derivatives. The numerical results obtained with a small amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the decomposition method is of high accuracy, more convenient and efficient for solving high-order boundary value problems.
文摘Several available methods, known in literatures, are available for solving nth order differential equations and their complexities differ based on the accuracy of the solution. A successful method, known to researcher in the area of computational electromagnetic and called the Method of Moment (MoM) is found to have its way in this domain and can be used in solving boundary value problems where differential equations are resulting. A simplified version of this method is adopted in this paper to address this problem, and two differential equations examples are considered to clarify the approach and present the simplicity of the method. As illustrated in this paper, this approach can be introduced along with other methods, and can be considered as an attractive way to solve differential equations and other boundary value problems.
基金the National Natural Science Foundation of China (Nos.11571238,11601332,91130014,11471312 and 91430216).
文摘Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.
文摘This paper presents the use of differential transformation method (DTM), an approximating technique for solving linear higher order boundary value problems. Using DTM, approximate solutions of order seven and eight boundary value problems were developed. Approximate results are given for some examples to illustrate the efficiency and accuracy of the method. The results from this method are compared with the exact solutions.
文摘The purpose of this paper is to employ the Adomian Decomposition Method (ADM) and Restarted Adomian Decomposition Method (RADM) with new useful techniques to resolve Bratu’s boundary value problem by using a new integral operator. The solutions obtained in this way require the use of the boundary conditions directly. The obtained results indicate that the new techniques give more suitable and accurate solutions for the Bratu-type problem, compared with those for the ADM and its modification.
文摘In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the problem. The effectiveness of the each modified is verified by several examples.
文摘We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.
文摘We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value problem. We obtain Septic B-Spline formulation and the Collocation B-spline method is formulated as an approximation solution. We apply the presented method to solve an example of seventh order boundary value problem in which the result shows that there is an agreement between approximate solutions and exact solutions. Resulting in low absolute errors shows that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10671120)
文摘This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the scheme, numerical simulation for the weak entropy solution to the initial-boundary value problem of scalar conservation laws is conducted.