This paper presents a fringe-carrier method that eliminates sign ambiguity of transient moire fringes which can be used to automatically determine the relative orders. A fringe carrier is preset in the static state of...This paper presents a fringe-carrier method that eliminates sign ambiguity of transient moire fringes which can be used to automatically determine the relative orders. A fringe carrier is preset in the static state of the specimen and the dynamic in-plane displacements are recorded as the modulation to the frequency of the carrier fringes when the specimen is loaded by impact. According to a modulating criterion developed from the modulation degree, the fringes of the transient moire patterns keep monotonical in orders so that they can be automatically encoded in grey levels by a digital image system. The moire orders purely caused by dynamic loadings are evaluated by subtracting the grey-value of the unmodulated carrier image from that of the modulated carrier images encoded by their orders. With the subtracted moire orders the strain components can be obtained, and, correspondingly, the histograms of dynamic displacement moire images are shown with order variation by image-difference.展开更多
X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from ...X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phasestepping data.The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position.However,stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition.Previous studies have shown that those influences introduce errors in the acquired phase-stepping data,which cause obvious moiréartifacts in the retrieved refraction image.This work investigates moiréartifacts in x-ray dark-field imaging as a result of flux fluctuations.For the retrieved mean intensity,amplitude,visibility and dark-field images,the dependence of moiréartifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion.Results of synchrotron radiation experiments verify the validity of the derived analytical formulas.The spatial frequency characteristics of moiréartifacts are analyzed and compared to those induced by phase-stepping errors.It illustrates that moiréartifacts can be estimated by a weighted mean of flux fluctuation factors,with the weighting factors dependent on the moiréphase and different greatly for each retrieved image.Furthermore,moiréartifacts can even be affected by object’s features not displayed in the particular contrast.These results can be used to interpret images correctly,identify sources of moiréartifacts,and develop dedicated algorithms to remove moiréartifacts in the retrieved multi-contrast images.展开更多
Moiré patterns on HOPG were studied with scanning tunneling microscopy (STM). The results reveal that the observed Moiré patterns originate from the defects locating several layers below the surface, which...Moiré patterns on HOPG were studied with scanning tunneling microscopy (STM). The results reveal that the observed Moiré patterns originate from the defects locating several layers below the surface, which presents the first experimental evidence supporting the prediction that in HOPG the nanoscale electronic waves can propagate through several layers without obvious decay.展开更多
Using the Lindemann criterion,we analyzed the quantum and thermal melting of electronic/excitonic crystals recently discovered in two-dimensional(2D)semiconductor moirépatterns.We show that the finite 2D screenin...Using the Lindemann criterion,we analyzed the quantum and thermal melting of electronic/excitonic crystals recently discovered in two-dimensional(2D)semiconductor moirépatterns.We show that the finite 2D screening of the atomically thin material can suppress(enhance)the inter-site Coulomb(dipolar)interaction strength,thus inhibits(facilitates)the formation of the electronic(excitonic)crystal.Meanwhile,a strong enough moiréconfinement is found to be essential for realizing the crystal phase with a wavelength near 10 nm or shorter.From the calculated Lindemann ratio which quantifies the fluctuation of the site displacement,we estimate that the crystal will melt into a liquid above a critical temperature ranging from several tens Kelvin to above 100 K(depending on the system parameters).展开更多
A new method for constructing digital-strain-field-image from a moire pattern with the help of digital image processing technique is proposed in this paper. The digital-strain-field-image expresses the strain values d...A new method for constructing digital-strain-field-image from a moire pattern with the help of digital image processing technique is proposed in this paper. The digital-strain-field-image expresses the strain values directly by its grey levels. The digital-strain-field-image can be obtained by making a differentiation for the digital moire pattern and doing a simple division operation. This image not only gives the visual strain field distribution, but also gives the strain values of every point. This method is simple and applicable and has satisfactory accuracy.展开更多
We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge u...We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge under the inversion symmetry breaking introduced by an effective mass imbalance between the two layers or a moiré potential in one layer, as well as under the time-reversal symmetry breaking realized by applying a magnetic field. Considering the wide tunability of layered materials, the frequencies and chirality of phonons can both be tuned by varying the system parameters. These findings suggest that bilayer honeycomb-type Wigner crystals can serve as an exciting new platform for studying chiral phonons.展开更多
A hybrid technique of combining moire measurement and analytical solution is developed to separate the normal and the tangential components of distributed contact stresses between two co-plane bodies. The moire interf...A hybrid technique of combining moire measurement and analytical solution is developed to separate the normal and the tangential components of distributed contact stresses between two co-plane bodies. The moire interfe-rometry offers the displacement fields near the deformed contact zone, from which the tangential strains and boundary slopes of the deformed configurations can be evaluated. Those experimental results provide boundary conditions for the discrete integration of Flamant's solutions, to inversely compute the separated components of the contact stresses.展开更多
In van der Waals heterostructures of atomically thin 2D materials, the inevitable lattice mismatch and twisting between the building blocks always lead to the formation of Moire pattern, which is a periodic spatial pa...In van der Waals heterostructures of atomically thin 2D materials, the inevitable lattice mismatch and twisting between the building blocks always lead to the formation of Moire pattern, which is a periodic spatial pattern of varying atomic registries. Theory has predicted that such a nanoscale moire landscape can endow excitons highly intriguing properties (Science Advances 3, e1701696 (2017)), including their confinement in an array of quantum dot like potential traps with circularly polarized valley optical selection rules.展开更多
Moirépatterns in physics are interference fringes produced when a periodic template is stacked on another similar one with different displacement and twist angles.The phonon in two-dimensional(2D)material affecte...Moirépatterns in physics are interference fringes produced when a periodic template is stacked on another similar one with different displacement and twist angles.The phonon in two-dimensional(2D)material affected by moirépatterns in the lattice shows various novel physical phenomena,such as frequency shift,different linewidth,and mediation to the superconductivity.This review gives a brief overview of phonons in 2D moirésuperlattice.First,we introduce the theory of the moiréphonon modes based on a continuum approach using the elastic theory and discuss the effect of the moirépattern on phonons in 2D materials such as graphene and MoS_(2).Then,we discuss the electron-phonon coupling(EPC)modulated by moirépatterns,which can be detected by the spectroscopy methods.Furthermore,the phonon-mediated unconventional superconductivity in 2D moirésuperlattice is introduced.The theory of phonon-mediated superconductivity in moirésuperlattice sets up a general framework,which promises to predict the response of superconductivity to various perturbations,such as disorder,magnetic field,and electric displacement field.展开更多
A novel method to separate and simultaneously record the Moiréinterferometry fringe patterns of three deformation fields with only one CCD camera is developed;details of its operation principle,key points and err...A novel method to separate and simultaneously record the Moiréinterferometry fringe patterns of three deformation fields with only one CCD camera is developed;details of its operation principle,key points and error analysis are presented.With this technique,the deformation in U,V and W fields can be measured simultaneously,so dynamic test with comprehensive information can be performed.The advantage of this technique over other similar techniques lies in its simplicity,easy implementation and low cost.An application of this technique is given to show its feasibility.Technical problems that may be caused with this technique are also analyzed.展开更多
基金The project supported by Alexander von Humboldt Foundation or Germany and the National Natural Science Foundation of China
文摘This paper presents a fringe-carrier method that eliminates sign ambiguity of transient moire fringes which can be used to automatically determine the relative orders. A fringe carrier is preset in the static state of the specimen and the dynamic in-plane displacements are recorded as the modulation to the frequency of the carrier fringes when the specimen is loaded by impact. According to a modulating criterion developed from the modulation degree, the fringes of the transient moire patterns keep monotonical in orders so that they can be automatically encoded in grey levels by a digital image system. The moire orders purely caused by dynamic loadings are evaluated by subtracting the grey-value of the unmodulated carrier image from that of the modulated carrier images encoded by their orders. With the subtracted moire orders the strain components can be obtained, and, correspondingly, the histograms of dynamic displacement moire images are shown with order variation by image-difference.
基金the Natural Science Foundation of China(Grant Nos.U1532113,11475170,and 11905041)Fundamental Research Funds for the Central Universities(Grant No.PA2020GDKC0024)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18).
文摘X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phasestepping data.The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position.However,stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition.Previous studies have shown that those influences introduce errors in the acquired phase-stepping data,which cause obvious moiréartifacts in the retrieved refraction image.This work investigates moiréartifacts in x-ray dark-field imaging as a result of flux fluctuations.For the retrieved mean intensity,amplitude,visibility and dark-field images,the dependence of moiréartifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion.Results of synchrotron radiation experiments verify the validity of the derived analytical formulas.The spatial frequency characteristics of moiréartifacts are analyzed and compared to those induced by phase-stepping errors.It illustrates that moiréartifacts can be estimated by a weighted mean of flux fluctuation factors,with the weighting factors dependent on the moiréphase and different greatly for each retrieved image.Furthermore,moiréartifacts can even be affected by object’s features not displayed in the particular contrast.These results can be used to interpret images correctly,identify sources of moiréartifacts,and develop dedicated algorithms to remove moiréartifacts in the retrieved multi-contrast images.
文摘Moiré patterns on HOPG were studied with scanning tunneling microscopy (STM). The results reveal that the observed Moiré patterns originate from the defects locating several layers below the surface, which presents the first experimental evidence supporting the prediction that in HOPG the nanoscale electronic waves can propagate through several layers without obvious decay.
基金support by the National Natural Science Foundation of China(Grant No.12274477)the Department of Science and Technology of Guangdong Province of China(Grant No.2019QN01X061)。
文摘Using the Lindemann criterion,we analyzed the quantum and thermal melting of electronic/excitonic crystals recently discovered in two-dimensional(2D)semiconductor moirépatterns.We show that the finite 2D screening of the atomically thin material can suppress(enhance)the inter-site Coulomb(dipolar)interaction strength,thus inhibits(facilitates)the formation of the electronic(excitonic)crystal.Meanwhile,a strong enough moiréconfinement is found to be essential for realizing the crystal phase with a wavelength near 10 nm or shorter.From the calculated Lindemann ratio which quantifies the fluctuation of the site displacement,we estimate that the crystal will melt into a liquid above a critical temperature ranging from several tens Kelvin to above 100 K(depending on the system parameters).
文摘A new method for constructing digital-strain-field-image from a moire pattern with the help of digital image processing technique is proposed in this paper. The digital-strain-field-image expresses the strain values directly by its grey levels. The digital-strain-field-image can be obtained by making a differentiation for the digital moire pattern and doing a simple division operation. This image not only gives the visual strain field distribution, but also gives the strain values of every point. This method is simple and applicable and has satisfactory accuracy.
基金supported by Tencent’s Program of Aspiring Explorers in Sciencesupport by the National Natural Science Foundation of China (Grant No. 12274477)the Department of Science and Technology of Guangdong Province in China (Grant No. 2019QN01X061)。
文摘We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge under the inversion symmetry breaking introduced by an effective mass imbalance between the two layers or a moiré potential in one layer, as well as under the time-reversal symmetry breaking realized by applying a magnetic field. Considering the wide tunability of layered materials, the frequencies and chirality of phonons can both be tuned by varying the system parameters. These findings suggest that bilayer honeycomb-type Wigner crystals can serve as an exciting new platform for studying chiral phonons.
基金the National Basic Research Program(2007CB935602)the National Natural Science Foundation of China(90607004)the ICM Fund of CAEP(42105080106).
文摘A hybrid technique of combining moire measurement and analytical solution is developed to separate the normal and the tangential components of distributed contact stresses between two co-plane bodies. The moire interfe-rometry offers the displacement fields near the deformed contact zone, from which the tangential strains and boundary slopes of the deformed configurations can be evaluated. Those experimental results provide boundary conditions for the discrete integration of Flamant's solutions, to inversely compute the separated components of the contact stresses.
文摘In van der Waals heterostructures of atomically thin 2D materials, the inevitable lattice mismatch and twisting between the building blocks always lead to the formation of Moire pattern, which is a periodic spatial pattern of varying atomic registries. Theory has predicted that such a nanoscale moire landscape can endow excitons highly intriguing properties (Science Advances 3, e1701696 (2017)), including their confinement in an array of quantum dot like potential traps with circularly polarized valley optical selection rules.
基金National Natural Science Foundation of China(12074371)CAS Interdisciplinary Innovation Team,Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)。
文摘Moirépatterns in physics are interference fringes produced when a periodic template is stacked on another similar one with different displacement and twist angles.The phonon in two-dimensional(2D)material affected by moirépatterns in the lattice shows various novel physical phenomena,such as frequency shift,different linewidth,and mediation to the superconductivity.This review gives a brief overview of phonons in 2D moirésuperlattice.First,we introduce the theory of the moiréphonon modes based on a continuum approach using the elastic theory and discuss the effect of the moirépattern on phonons in 2D materials such as graphene and MoS_(2).Then,we discuss the electron-phonon coupling(EPC)modulated by moirépatterns,which can be detected by the spectroscopy methods.Furthermore,the phonon-mediated unconventional superconductivity in 2D moirésuperlattice is introduced.The theory of phonon-mediated superconductivity in moirésuperlattice sets up a general framework,which promises to predict the response of superconductivity to various perturbations,such as disorder,magnetic field,and electric displacement field.
文摘A novel method to separate and simultaneously record the Moiréinterferometry fringe patterns of three deformation fields with only one CCD camera is developed;details of its operation principle,key points and error analysis are presented.With this technique,the deformation in U,V and W fields can be measured simultaneously,so dynamic test with comprehensive information can be performed.The advantage of this technique over other similar techniques lies in its simplicity,easy implementation and low cost.An application of this technique is given to show its feasibility.Technical problems that may be caused with this technique are also analyzed.