The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails....The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demonstrated in this paper.This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions.The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model.The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions:tropical,midlatitude summer,U.S.standard,and midlatitude winter.The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB "wind".This technique is valid over cloudfree ocean areas.The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD),speed bias (BIAS),mean vector difference (MVD),standard deviation (SD),and root-mean-square error (RMSE),when compared with the wind field of NCEP reanalysis data and rawinsonde observations.展开更多
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio...Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios.展开更多
The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the...The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.展开更多
针对现有基于机器学习的无参考视频质量评价方法中需要利用大量主观评价分值进行训练,导致复杂度高的问题,提出一种非主观值训练的盲视频质量评价算法.首先,利用高斯差分滤波器提取视频结构特征矢量,通过计算与质量感知中心的距离,来评...针对现有基于机器学习的无参考视频质量评价方法中需要利用大量主观评价分值进行训练,导致复杂度高的问题,提出一种非主观值训练的盲视频质量评价算法.首先,利用高斯差分滤波器提取视频结构特征矢量,通过计算与质量感知中心的距离,来评估视频空域感知质量;然后,利用聚类算法获取对运动矢量进行分类的阈值,进而得到运动感知因子;最后,结合视频空域感知质量和运动加权因子得到视频客观质量.实验结果表明:该算法在LIVE video quality数据库中对视频质量预测的单调性和精确性分别达到了0.817,7和0.828,5,优于对比的其他盲视频质量评价算法;同时,该算法计算复杂度低,易于实现.展开更多
This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decod...This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.展开更多
实现了一种基于块匹配法(Block Matching Algorithm)的电子稳像系统。系统使用TI公司的TMS320DM642专用图像处理芯片,稳像算法采用求和绝对误差(SAD,the Sum of Absolute Difference)作为块匹配的匹配准则来估算原始视频图像的运动矢量,...实现了一种基于块匹配法(Block Matching Algorithm)的电子稳像系统。系统使用TI公司的TMS320DM642专用图像处理芯片,稳像算法采用求和绝对误差(SAD,the Sum of Absolute Difference)作为块匹配的匹配准则来估算原始视频图像的运动矢量,SAD准则便于硬件实现。系统利用运动矢量对图像进行运动补偿后得到稳定的视频图像输出。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.41175035 and 41005005)the National Basic Research Program of China (Grant No.2009CB421502)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demonstrated in this paper.This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions.The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model.The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions:tropical,midlatitude summer,U.S.standard,and midlatitude winter.The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB "wind".This technique is valid over cloudfree ocean areas.The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD),speed bias (BIAS),mean vector difference (MVD),standard deviation (SD),and root-mean-square error (RMSE),when compared with the wind field of NCEP reanalysis data and rawinsonde observations.
基金the National Natural Science Foundation of China(Grant Nos.62272478,62202496,61872384).
文摘Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.41175035 and 40475018)the National Basic Research Program of China(Grant No.2009CB421502)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.
文摘针对现有基于机器学习的无参考视频质量评价方法中需要利用大量主观评价分值进行训练,导致复杂度高的问题,提出一种非主观值训练的盲视频质量评价算法.首先,利用高斯差分滤波器提取视频结构特征矢量,通过计算与质量感知中心的距离,来评估视频空域感知质量;然后,利用聚类算法获取对运动矢量进行分类的阈值,进而得到运动感知因子;最后,结合视频空域感知质量和运动加权因子得到视频客观质量.实验结果表明:该算法在LIVE video quality数据库中对视频质量预测的单调性和精确性分别达到了0.817,7和0.828,5,优于对比的其他盲视频质量评价算法;同时,该算法计算复杂度低,易于实现.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.
文摘实现了一种基于块匹配法(Block Matching Algorithm)的电子稳像系统。系统使用TI公司的TMS320DM642专用图像处理芯片,稳像算法采用求和绝对误差(SAD,the Sum of Absolute Difference)作为块匹配的匹配准则来估算原始视频图像的运动矢量,SAD准则便于硬件实现。系统利用运动矢量对图像进行运动补偿后得到稳定的视频图像输出。