期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Redundant discrete wavelet transforms based moving object recognition and tracking 被引量:3
1
作者 Gao Tao Liu Zhengguang Zhang Jun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1115-1123,共9页
A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf... A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect. 展开更多
关键词 traffic monitoring moving object recognition moving object tracking redundant discrete wavelet.
在线阅读 下载PDF
General moving objects recognition method based on graph embedding dimension reduction algorithm 被引量:1
2
作者 Yi ZHANG Jie YANG Kun LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第7期976-984,共9页
Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents... Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents a general moving objects recognition method using global features of targets. Targets are extracted with an adaptive Gaussian mixture model and their silhouette images are captured and unified. A new objects silhouette database is built to provide abundant samples to train the subspace feature. This database is more convincing than the previous ones. A more effective dimension reduction method based on graph embedding is used to obtain the projection eigenvector. In our experiments, we show the effective performance of our method in addressing the moving objects recognition problem and its superiority compared with the previous methods. 展开更多
关键词 moving objects recognition Adaptive Gaussian mixture model Principal component analysis Linear discriminant analysis Marginal Fisher analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部