期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling 被引量:5
1
作者 柳贺 黄道 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期373-378,共6页
A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback ... A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy. 展开更多
关键词 recurrent neural networks t-s fuzzy model chaotic search least square estimation MODELING
在线阅读 下载PDF
Neural Network Based Multi-level Fuzzy Evaluation Model for Mechanical Kinematic Scheme
2
作者 BO Ruifeng,LI Ruiqin (Department of Mechanical Engineering,North University of China,Taiyuan 030051,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期301-306,共6页
To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ... To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation. 展开更多
关键词 neural network mechanical KINEMATIC SCHEME multi-LEVEL evaluation model fuzzy
在线阅读 下载PDF
An Improved SPSA Algorithm for System Identification Using Fuzzy Rules for Training Neural Networks 被引量:1
3
作者 Ahmad T.Abdulsadda Kamran Iqbal 《International Journal of Automation and computing》 EI 2011年第3期333-339,共7页
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri... Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error. 展开更多
关键词 Nonlinear system identification simultaneous perturbation stochastic approximation (SPSA) neural networks (NNs) fuzzy rules multi-layer perceptron (MLP).
在线阅读 下载PDF
Robust fuzzy control of Takagi-Sugeno fuzzy neural networks with discontinuous activation functions and time delays
4
作者 Yaonan Wang Xiru Wu Yi Zuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期473-481,共9页
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor... The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results. 展开更多
关键词 delayed neural network global robust asymptotical stability discontinuous neuron activation linear matrix inequality(LMI) Takagi-sugeno(t-s fuzzy model.
在线阅读 下载PDF
Registration algorithm for sensor alignment based on stochastic fuzzy neural network
5
作者 LiJiao JingZhongliang +1 位作者 HeJiaona WangAn 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期134-139,共6页
Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors... Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result. 展开更多
关键词 multi-sensors REGISTRATION fuzzy clustering stochastic fuzzy neural network.
在线阅读 下载PDF
Research on Financial Distress Prediction with Adaptive Genetic Fuzzy Neural Networks on Listed Corporations of China
6
作者 Zhibin XIONG 《International Journal of Communications, Network and System Sciences》 2009年第5期385-391,共7页
To design a multi-population adaptive genetic BP algorithm, crossover probability and mutation probability are self-adjusted according to the standard deviation of population fitness in this paper. Then a hybrid model... To design a multi-population adaptive genetic BP algorithm, crossover probability and mutation probability are self-adjusted according to the standard deviation of population fitness in this paper. Then a hybrid model combining Fuzzy Neural Network and multi-population adaptive genetic BP algorithm—Adaptive Genetic Fuzzy Neural Network (AGFNN) is proposed to overcome Neural Network’s drawbacks. Furthermore, the new model has been applied to financial distress prediction and the effectiveness of the proposed model is performed on the data collected from a set of Chinese listed corporations using cross validation approach. A comparative result indicates that the performance of AGFNN model is much better than the ones of other neural network models. 展开更多
关键词 multi-POPULATION ADAPTIVE GENETIC BP Algorithm fuzzy neural network Cross Validation FINANCIAL DISTRESS
在线阅读 下载PDF
基于和声搜索优化多T-S模糊神经网络的聚合釜过程软测量建模 被引量:9
7
作者 高淑芝 高宪文 王介生 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第3期495-500,共6页
根据多个模型相加可以提高整体预测精度和鲁棒性的思想,提出一种基于模糊C均值聚类算法的多T-S模糊神经网络模型对聚氯乙烯(polyvinylchlorid,PVC)聚合生产过程中的氯乙烯(vinyl chloride monomer,VCM)转化率和转化速率进行预测。首先... 根据多个模型相加可以提高整体预测精度和鲁棒性的思想,提出一种基于模糊C均值聚类算法的多T-S模糊神经网络模型对聚氯乙烯(polyvinylchlorid,PVC)聚合生产过程中的氯乙烯(vinyl chloride monomer,VCM)转化率和转化速率进行预测。首先采用主元分析来对软测量模型的辅助变量进行选择以降低模型维数,并提出和声搜索和最小二乘法相结合的混合优化算法来优化T-S模糊神经网络子模型的结构参数。仿真结果表明该模型能够显著提高PVC聚合过程中经济技术指标预测的精度和鲁棒性,可以满足聚合釜生产过程的实时控制要求。 展开更多
关键词 聚合釜 t-s模糊神经网络 主元分析 软测量 和声搜索
在线阅读 下载PDF
基于T-S模糊神经网络的地铁深基坑安全预警 被引量:16
8
作者 王乾坤 年春光 +1 位作者 杨冬 张雨峰 《中国安全科学学报》 CAS CSCD 北大核心 2018年第8期161-167,共7页
为提高地铁深基坑施工安全预警的准确性和高效性,针对传统预警信息分析处理过程中存在的单指标评判、人为随意决策、不同指向的信息错误组合等问题,提出基于T-S模糊神经网络的多信息融合模型。以黄浦新城站深基坑工程为背景,从空间区位... 为提高地铁深基坑施工安全预警的准确性和高效性,针对传统预警信息分析处理过程中存在的单指标评判、人为随意决策、不同指向的信息错误组合等问题,提出基于T-S模糊神经网络的多信息融合模型。以黄浦新城站深基坑工程为背景,从空间区位和事故警情2个方面识别与筛选安全预警信息源;运用T-S模糊神经网络构建多信息融合模型,选取大量样本对模型进行训练与检测,以提高模型的有效性和泛化能力;融合预警信息并对融合结果进行分析。结果表明:空间区位和事故警情的融合结果与现场的警情位置和警情类型相吻合,证明该融合模型在深基坑施工安全预警中具有可行性与适用性。 展开更多
关键词 t-s模糊神经网络 地铁深基坑 安全预警 多源信息识别 多源信息融合
在线阅读 下载PDF
T-S型模糊RBF神经网络多变量自适应控制器的研究
9
作者 鲍鸿 黄心汉 李锡雄 《广东工业大学学报》 CAS 1999年第4期10-16,共7页
提出TS型模糊RBF神经网络模型,并将该网络模型应用于多变量控制系统,构成多变量自适应控制器.同时对网络结构和参数的学习算法及网络参数的在线自学习算法进行研究.仿真结果表明本文提出的学习方法是有效的。
关键词 模糊控制 神经网络 多变量控制 自适应控制
在线阅读 下载PDF
T-S norm FNN controller based on hybrid learning algorithm
10
作者 郭冰洁 李岳明 万磊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期27-32,共6页
Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used... Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers. 展开更多
关键词 t-s NORM fuzzy neural network UNDERWATER vehicles IMMUNE GENETIC ALGORITHM Hybrid learning ALGORITHM
在线阅读 下载PDF
A new neural network model for the feedback stabilization of nonlinear systems
11
作者 Mei-qin LIU Sen-lin ZHANG Gang-feng YAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第8期1015-1023,共9页
A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constrain... A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper. 展开更多
关键词 Standard neural network model (SNNM) Linear matrix inequality (LMI) Nonlinear control Asymptotic stability Chaotic cellular neural network Takagi and Sugeno t-s fuzzy model
在线阅读 下载PDF
A Condition States Assessment System for Concrete Bridges Using Neural Networks
12
作者 Hu Zhijian Jia Lijun Xiao Rueheng 《工程科学(英文版)》 2006年第3期67-76,共10页
Due to continuing aging and heavy utilization of many bridges and the limited available funds, the importance of proper bridge condition state assessment has risen recently, which is the crucial point for rational dec... Due to continuing aging and heavy utilization of many bridges and the limited available funds, the importance of proper bridge condition state assessment has risen recently, which is the crucial point for rational decision-making on MR&R activities. This paper presents a prototype of the concrete bridge condition state assessment system (CBCSAS) with the following sub-modules: inspection, parameter recognition, structural assessment, main cause identification and priority-to-action. And multi-layer neural networks, which may combine with fuzzy set theory or not, are performed to realize the structural assessment with embedding expert knowledge into the assessment system. 展开更多
关键词 混凝土桥梁 多层神经网络 模糊集合论 条件状态评价系统
在线阅读 下载PDF
基于模糊神经网络在线自学习的多智能体一致性控制
13
作者 张宪霞 唐胜杰 俞寅生 《自动化学报》 北大核心 2025年第3期590-603,共14页
针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,D... 针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,DFNN和神经网络(Neural network,NN)分别逼近控制策略和性能指标.每个智能体的DFNN执行者从零规则开始,通过在线学习,与其局部邻域的智能体交互而生成和合并规则.最终,每个智能体都有一个独特的DFNN控制器,具有不同的结构和参数,实现了最优的分布式同步控制律.仿真结果表明,本文提出的在线算法在非线性多智能体系统分布式一致性控制中优于传统基于NN的ADP算法. 展开更多
关键词 多智能体系统 自适应动态规划 动态模糊神经网络 分布式一致性控制 在线学习
在线阅读 下载PDF
基于事件触发的多电机驱动系统模糊自适应反步控制
14
作者 陈志威 罗绍华 +1 位作者 李枫韵 胡廷耀 《组合机床与自动化加工技术》 北大核心 2025年第2期109-113,119,共6页
针对多电机驱动系统,为解决负载装置跟踪参考运动轨迹的控制问题,提出了一种基于事件触发的模糊自适应反步控制方案。首先,建立了多电机驱动系统包含死区、摩擦、未知干扰和工作负载等非线性因素的动力学模型;其次,将速度函数、区间二... 针对多电机驱动系统,为解决负载装置跟踪参考运动轨迹的控制问题,提出了一种基于事件触发的模糊自适应反步控制方案。首先,建立了多电机驱动系统包含死区、摩擦、未知干扰和工作负载等非线性因素的动力学模型;其次,将速度函数、区间二型模糊神经网络、二阶跟踪微分器融入到反步控制框架中,以解决多电机驱动系统的负载跟踪控制问题;同时,采用事件触发策略更新控制器输入,达到节约通信资源的目的,李雅普诺夫理论证明了所提方案的稳定性;最后,仿真实验结果证明了所设计方案的有效性。 展开更多
关键词 多电机驱动系统 事件触发 区间二型模糊神经网络 反步控制
在线阅读 下载PDF
地面移动机器人路径避障控制策略研究
15
作者 孙建召 赵进超 《机械设计与制造》 北大核心 2024年第10期324-330,338,共8页
针对地面移动机器人在复杂工作环境的避障要求,分别设计了模糊控制器算法和模糊神经网络算法。首先在在地面移动机器人上的安装多传感器检测系统,在此基础上设计了自适应加权多传感器信息融合模型,将融合算法的结果作为避障控制算法的... 针对地面移动机器人在复杂工作环境的避障要求,分别设计了模糊控制器算法和模糊神经网络算法。首先在在地面移动机器人上的安装多传感器检测系统,在此基础上设计了自适应加权多传感器信息融合模型,将融合算法的结果作为避障控制算法的输入。分别在模糊神经网络算法和模糊控制器基础上,真实的模拟出地面移动机器人避障路径,结果表明模糊神经网络算法下的地面移动机器人避障运动路径更平滑,地面移动机器人路径与障碍物的距离更大。最后通过地面移动机器人实验平台上的避障实验,验证了模糊神经网络避障算法的优越性和可靠性。 展开更多
关键词 多传感器信息融合 地面移动机器人 避障路径 模糊神经网络
在线阅读 下载PDF
基于人工智能算法的刀具磨损形貌预测研究现状 被引量:1
16
作者 周鑫 韩翠红 +1 位作者 曲周德 王井玲 《工具技术》 北大核心 2024年第5期11-21,共11页
磨损表面形貌能够反映运动副的磨损状态,通过对运动副表面磨损形貌进行研究分析,可以得到其磨损规律,预测磨损形貌变化。随着人工智能的快速发展以及在工程中的广泛应用,人工智能技术中的人工神经网络、模糊神经网络算法、遗传神经网络... 磨损表面形貌能够反映运动副的磨损状态,通过对运动副表面磨损形貌进行研究分析,可以得到其磨损规律,预测磨损形貌变化。随着人工智能的快速发展以及在工程中的广泛应用,人工智能技术中的人工神经网络、模糊神经网络算法、遗传神经网络算法、支持向量机和多目标粒子群优化算法等方法逐步应用于磨损表面形貌表征参数的预测,且具有较高的预测精度。本文主要介绍国内外利用人工智能技术对磨损表面形貌的研究现状,分析各种算法的优点和应用局限性。总结了人工智能技术在磨损表面形貌预测领域中亟待解决的关键难题以及未来的研究方向。 展开更多
关键词 人工神经网络 模糊神经网络算法 遗传神经网络算法 支持向量机 多项目粒子群优化算法
在线阅读 下载PDF
基于改进PSO优化的RBF火灾预测系统
17
作者 孙立辉 周洁 徐金鸣 《智能计算机与应用》 2024年第7期216-221,共6页
针对系统预测火灾状态不准确,导致火情变大造成人民群众生命和财产损失的问题,本文提出了一种基于改进粒子群优化的径向基神经网络多传感器数据融合算法的火灾状态预测系统。以温度、烟雾浓度、一氧化碳浓度为输入,以无火、阴燃火、明... 针对系统预测火灾状态不准确,导致火情变大造成人民群众生命和财产损失的问题,本文提出了一种基于改进粒子群优化的径向基神经网络多传感器数据融合算法的火灾状态预测系统。以温度、烟雾浓度、一氧化碳浓度为输入,以无火、阴燃火、明火的概率为输出,为了避免输出产生偏差,模糊推理系统对神经网络系统的输出做补偿。由于粒子群算法存在容易陷入局部最优的缺陷,采用一种非线性动态自适应惯性权重的改进粒子群优化算法(IPSO)。仿真实验表明,改进后的系统,以明火为例的平均绝对百分比误差达到0.169、均方根误差达到0.0021、平均绝对误差达到0.031。 展开更多
关键词 改进粒子群优化算法 径向基神经网络 模糊推理系统 预测火灾状态 多传感器数据融合算法
在线阅读 下载PDF
基于统计和自适应ParNet的产学研绩效评价 被引量:1
18
作者 张睿 宋思琪 +2 位作者 胡静 张永梅 柴艳峰 《计算机应用》 CSCD 北大核心 2024年第2期628-637,共10页
针对现有产学研绩效评价体系及方法中存在的评价指标覆盖范围单一、评价样本特征表达不充分、评价模型自优化能力待提高的问题,提出主客观产学研综合绩效智能评价的评价体系及方法。首先,围绕三方合作主体,挖掘产学研合作过程中影响绩... 针对现有产学研绩效评价体系及方法中存在的评价指标覆盖范围单一、评价样本特征表达不充分、评价模型自优化能力待提高的问题,提出主客观产学研综合绩效智能评价的评价体系及方法。首先,围绕三方合作主体,挖掘产学研合作过程中影响绩效的要素及这些要素之间的联系,自主构建主客观产学研绩效三级评价体系;其次,通过将收集到的离散序列评价样本映射至极坐标空间、马尔可夫转移矩阵等不同高维空间域,增强离散样本特征表征;然后,通过基于精英反向翻筋斗觅食的混沌优化策略设计,提高深度模型冗余压缩和超参数的全局寻优效率,构建轻量压缩及高维超参数的自适应寻优的ParNet(AParNet)分类模型;最后,将模型应用于产学研绩效评价中,实现高性能的绩效智能评价。实验结果表明,所提方法很好地贴合了离散序列非线性分类应用,同时模型中加入优化策略后,在减少计算量的同时提高了分类性能,具体体现在:与ParNet相比,AParNet中的参数量减少了10.8%,较好地实现了模型的压缩,且它在产学研绩效评价中的分类准确率可达到98.6%。在产学研绩效智能评价应用中,该方法提高了评价模型的自适应能力,能够实现准确、高效的产学研绩效评价。 展开更多
关键词 产学研合作绩效评价 模糊统计 多空间域映射 卷积神经网络 模型自优化策略
在线阅读 下载PDF
一种用于非线性动态辨识的新型神经网络
19
作者 张剑 林瑞昌 毕天昊 《控制工程》 CSCD 北大核心 2024年第8期1383-1391,共9页
为提高非线性动态系统辨识(NDSI)的效果,在结合自建型模糊神经网络(SCFNN)和多层神经元神经网络(MLPNN)的基础上,提出一种自建递归型模糊神经网络(SCRFNN)。SCRFNN相较于前者,多了一个递归通道与抑制模糊规则产生机制;相较于后者,增加... 为提高非线性动态系统辨识(NDSI)的效果,在结合自建型模糊神经网络(SCFNN)和多层神经元神经网络(MLPNN)的基础上,提出一种自建递归型模糊神经网络(SCRFNN)。SCRFNN相较于前者,多了一个递归通道与抑制模糊规则产生机制;相较于后者,增加了模糊推论与一个递归通道。为验证SCRFNN在系统辨识中的有效性,设计一个新的NDSI在线学习模型与代码设计流程图,并以此作为在线学习架构,将以上3个神经网络模型对4个串-并型非线性动态系统进行辨识分析。经过仿真表明,新提出的SCRFNN通过存储内部状态,具备了映射动态特征的功能,从而使系统具有适应时变特性的能力,更适合于非线性动态系统的辩识。且在模糊规则数、学习收敛速度、学习与预测误差均方根值、预测精准度方面也取得了良好的效果。 展开更多
关键词 自建递归型模糊神经网络 自建型模糊神经网络 多层神经元神经网络 非线性动态系统辨识
在线阅读 下载PDF
发动机多目标优化的正交模糊神经网络方法研究
20
作者 金昶明 《小型内燃机与车辆技术》 CAS 2024年第2期69-74,共6页
提出了一种基于正交优化方法、模糊函数和神经网络辨识系统三者相结合的多目标优化新方法-OFNN法(Orthogonal Fuzzy Neural Network)。该方法综合了正交优化能够以最少的试验次数,达到与全面的试验等效结果的特性、模糊理论建立评判准... 提出了一种基于正交优化方法、模糊函数和神经网络辨识系统三者相结合的多目标优化新方法-OFNN法(Orthogonal Fuzzy Neural Network)。该方法综合了正交优化能够以最少的试验次数,达到与全面的试验等效结果的特性、模糊理论建立评判准则的特性以及神经网络自学习的智能特性,最终通过有限次数的仿真试验和模糊神经网络的自学习诊断,对发动机的油耗,NOx、碳烟和爆发压力找到了多目标优化合理的解决方案,该方法为多目标优化提供了一种新思路。 展开更多
关键词 发动机 多目标优化 正交 模糊 神经网络
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部