To determine the time-independent constitutive modeling for porous and multi- phase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated ...To determine the time-independent constitutive modeling for porous and multi- phase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated as a mixture of grain interior and grain bound- ary, and pores were taken as a single phase, then Budiansky's self-consistent method was used to calculate the Young's modulus of porous, possible multi-phase, nanocrystalline materials, the prediction being in good agreement with the results in the literature. Further, the established method is extended to simulate the constitutive relations of porous and possible multi-phase nanocrystalline materials with small plastic deformation in conjunction with the secant-moduli approach and iso-strain assumption. Comparisons between the experimental grain size and porosity dependent mechanical data and the corresponding predictions using the established model show that it appears to be capable of describing the time-independent mechanical behaviors for porous and multi-phase nanocrystalline materials in a small plastic strain range. Further discussion on the modification factor, the advantages and limitations of the model developed were present.展开更多
A dislocation interaction model has been proposed for cyclic deformation of fcc crystals.Ac- cording to this model,cyclic stress-strain responses and saturation dislocation structures of a crystal are associated with ...A dislocation interaction model has been proposed for cyclic deformation of fcc crystals.Ac- cording to this model,cyclic stress-strain responses and saturation dislocation structures of a crystal are associated with the modes and intensities of dislocation interactions between slip systems active in the crystal; and,hence,may be predicted by the location of its tensile axis in the crystallographic triangle.This model has successfully explained the different behaviours of double-slip crystals and multi-slip behaviours of some crystals with orientations usually con- sidered as single-slip ones.展开更多
Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be ext...Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multiseam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.展开更多
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as...In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.展开更多
Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mas...Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10502025)Fok Ying Tong Education Foundation (No.101005)University Foundation of Jiangsu Province (No.05KJB1300421)
文摘To determine the time-independent constitutive modeling for porous and multi- phase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated as a mixture of grain interior and grain bound- ary, and pores were taken as a single phase, then Budiansky's self-consistent method was used to calculate the Young's modulus of porous, possible multi-phase, nanocrystalline materials, the prediction being in good agreement with the results in the literature. Further, the established method is extended to simulate the constitutive relations of porous and possible multi-phase nanocrystalline materials with small plastic deformation in conjunction with the secant-moduli approach and iso-strain assumption. Comparisons between the experimental grain size and porosity dependent mechanical data and the corresponding predictions using the established model show that it appears to be capable of describing the time-independent mechanical behaviors for porous and multi-phase nanocrystalline materials in a small plastic strain range. Further discussion on the modification factor, the advantages and limitations of the model developed were present.
文摘A dislocation interaction model has been proposed for cyclic deformation of fcc crystals.Ac- cording to this model,cyclic stress-strain responses and saturation dislocation structures of a crystal are associated with the modes and intensities of dislocation interactions between slip systems active in the crystal; and,hence,may be predicted by the location of its tensile axis in the crystallographic triangle.This model has successfully explained the different behaviours of double-slip crystals and multi-slip behaviours of some crystals with orientations usually con- sidered as single-slip ones.
基金supported by the Australian Research Council in the form of a Discovery Grant and funding through the Centre of Excellence for Geotechnical Scienceand Engineering
文摘Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multiseam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.
文摘In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.
文摘Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.