期刊文献+
共找到685篇文章
< 1 2 35 >
每页显示 20 50 100
Application Research of Multi-Dimensional Customer Behavior Analysis Model in Precision Marketing
1
作者 Shuotong Dong 《Open Journal of Applied Sciences》 2024年第12期3589-3600,共12页
The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends ... The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research. 展开更多
关键词 Customer Behavior Analysis Precision Marketing multi-dimensional model data Theory Personalized Recommendation
在线阅读 下载PDF
Seismic data reconstruction based on low dimensional manifold model 被引量:1
2
作者 Nan-Ying Lan Fan-Chang Zhang Xing-Yao Yin 《Petroleum Science》 SCIE CAS CSCD 2022年第2期518-533,共16页
Seismic data reconstruction is an essential and yet fundamental step in seismic data processing workflow,which is of profound significance to improve migration imaging quality,multiple suppression effect,and seismic i... Seismic data reconstruction is an essential and yet fundamental step in seismic data processing workflow,which is of profound significance to improve migration imaging quality,multiple suppression effect,and seismic inversion accuracy.Regularization methods play a central role in solving the underdetermined inverse problem of seismic data reconstruction.In this paper,a novel regularization approach is proposed,the low dimensional manifold model(LDMM),for reconstructing the missing seismic data.Our work relies on the fact that seismic patches always occupy a low dimensional manifold.Specifically,we exploit the dimension of the seismic patches manifold as a regularization term in the reconstruction problem,and reconstruct the missing seismic data by enforcing low dimensionality on this manifold.The crucial procedure of the proposed method is to solve the dimension of the patches manifold.Toward this,we adopt an efficient dimensionality calculation method based on low-rank approximation,which provides a reliable safeguard to enforce the constraints in the reconstruction process.Numerical experiments performed on synthetic and field seismic data demonstrate that,compared with the curvelet-based sparsity-promoting L1-norm minimization method and the multichannel singular spectrum analysis method,the proposed method obtains state-of-the-art reconstruction results. 展开更多
关键词 Seismic data reconstruction Low dimensional manifold model REGULARIZATION Low-rank approximation
在线阅读 下载PDF
A 3-DIMENSIONAL DATA MODEL FOR VISUALIZING CLOVERLEAF JUNCTION IN A CITY MODEL 被引量:6
3
作者 Chen Jun Sun Min Zhou Qiming 《Geo-Spatial Information Science》 1999年第1期9-15,共7页
The research work has been seldom done about cloverleaf junction expression in a 3-dimensional city model (3DCM). The main reason is that the cloverleaf junction is often in a complex and enormous construction. Its ma... The research work has been seldom done about cloverleaf junction expression in a 3-dimensional city model (3DCM). The main reason is that the cloverleaf junction is often in a complex and enormous construction. Its main body is bestraddle in air,and has aerial intersections between its parts. This complex feature made cloverleaf junction quite different from buildings and terrain, therefore, it is difficult to express this kind of spatial objects in the same way as for buildings and terrain. In this paper,authors analyze spatial characteristics of cloverleaf junction, propose an all-constraint points TIN algorithm to partition cloverleaf junction road surface, and develop a method to visualize cloverleaf junction road surface using TIN. In order to manage cloverleaf junction data efficiently, the authors also analyzed the mechanism of 3DCM data management, extended BLOB type in relational database, and combined R-tree index to manage 3D spatial data. Based on this extension, an appropriate data 展开更多
关键词 3-dimensional CITY model (3DCM) GIS cloverleaf JUNCTION data STRUCTURE dataBASE
在线阅读 下载PDF
Testing a Four-Dimensional Variational Data Assimilation Method Using an Improved Intermediate Coupled Model for ENSO Analysis and Prediction 被引量:12
4
作者 Chuan GAO Xinrong WU Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第7期875-888,共14页
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ... A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction. 展开更多
关键词 Four-dimensional variational data assimilation intermediate coupled model twin experiment ENSO prediction
在线阅读 下载PDF
Multi-dimensional database design and implementation of dam safety monitoring system 被引量:2
5
作者 Zhao Erfeng Wang Yachao +2 位作者 Jiang Yufeng Zhang Lei Yu Hong 《Water Science and Engineering》 EI CAS 2008年第3期112-120,共9页
To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mo... To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers. 展开更多
关键词 dam safety multi-dimensional database conceptual data model database mode monitoring system
在线阅读 下载PDF
A DESIGN OF THREE-DIMENSIONAL SPATIAL DATA MODEL AND ITS DATA STRUCTURE IN GEOLOGICAL EXPLORATION ENGINEERING
6
作者 Cheng Penggen Gong Jianya +1 位作者 Wang Yandong Sui Haigang 《Geo-Spatial Information Science》 1999年第1期78-85,共8页
The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there ar... The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there are no perfect data structures that can describe all spatial entities. Every data structure has its own advantages and disadvantages. It is difficult to design a single data structure to meet different needs. The important subject in the3-D data models is developing a data model that has integrated vector and raster data structures. A special 3-D spatial data model based on distributing features of spatial entities should be designed. We took the geological exploration engineering as the research background and designed an integrated data model whose data structures integrats vector and raster data byadopting object-oriented technique. Research achievements are presented in this paper. 展开更多
关键词 GEOLOGICAL EXPLORATION ENGINEERING GEOGRAPHIC information system three dimensional data model data structure
在线阅读 下载PDF
Augmented Industrial Data-Driven Modeling Under the Curse of Dimensionality
7
作者 Xiaoyu Jiang Xiangyin Kong Zhiqiang Ge 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第6期1445-1461,共17页
The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased si... The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications. 展开更多
关键词 Index Terms—Curse of dimensionality data augmentation data-driven modeling industrial processes machine learning
在线阅读 下载PDF
Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation 被引量:26
8
作者 Fuqing ZHANG Meng ZHANG James A. HANSEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期1-8,共8页
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim... This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations. 展开更多
关键词 data assimilation four-dimensional variational data assimilation ensemble Kalman filter Lorenz model hybrid method
在线阅读 下载PDF
Variance Estimation for High-Dimensional Varying Index Coefficient Models
9
作者 Miao Wang Hao Lv Yicun Wang 《Open Journal of Statistics》 2019年第5期555-570,共16页
This paper studies the re-adjusted cross-validation method and a semiparametric regression model called the varying index coefficient model. We use the profile spline modal estimator method to estimate the coefficient... This paper studies the re-adjusted cross-validation method and a semiparametric regression model called the varying index coefficient model. We use the profile spline modal estimator method to estimate the coefficients of the parameter part of the Varying Index Coefficient Model (VICM), while the unknown function part uses the B-spline to expand. Moreover, we combine the above two estimation methods under the assumption of high-dimensional data. The results of data simulation and empirical analysis show that for the varying index coefficient model, the re-adjusted cross-validation method is better in terms of accuracy and stability than traditional methods based on ordinary least squares. 展开更多
关键词 HIGH-dimensional data Refitted Cross-Validation VARYING INDEX COEFFICIENT modelS Variance ESTIMATION
在线阅读 下载PDF
基于一种距离相关的超高维生存数据Model-Free特征筛选
10
作者 潘莹丽 王昊宇 +1 位作者 喻佳丽 刘展 《湖北大学学报(自然科学版)》 CAS 2024年第1期122-132,共11页
随着大数据时代的来临,数据维度爆炸式增长,超高维数据的降维问题逐渐成为众多研究领域的热点话题。由于响应变量通常存在右删失,处理超高维完全数据的降维方法在右删失数据中将不再适用。本研究提出一种新的基于距离相关能有效处理超... 随着大数据时代的来临,数据维度爆炸式增长,超高维数据的降维问题逐渐成为众多研究领域的热点话题。由于响应变量通常存在右删失,处理超高维完全数据的降维方法在右删失数据中将不再适用。本研究提出一种新的基于距离相关能有效处理超高维右删失数据的特征筛选方法。首先利用距离相关系数计算每个协变量对响应变量的边际效应,建立与该系数有关的筛选指标,然后再根据事先确立的筛选准则进行特征筛选。提出的特征筛选方法不依赖任何模型结构假定,因此可以有效避免模型指定错误带来的不良后果。此外,该方法采用的距离协方差估计量是总体距离协方差的一个无偏估计,统计准确性和计算精度高。模拟和实证研究表明,提出的方法能在保留所有重要变量的前提下快速剔除与响应变量相关程度较弱的协变量,从而达到降低参数维数的目的。 展开更多
关键词 超高维数据 生存数据 距离相关 model-Free特征筛选
在线阅读 下载PDF
三维空间土壤推测与土壤模型构建研究进展
11
作者 解宪丽 夏成业 +3 位作者 殷彪 李安波 李开丽 潘贤章 《土壤学报》 北大核心 2025年第1期14-28,共15页
土壤是具有高度异质性的复合体。早期的数字土壤制图研究主要关注水平方向的土壤空间变异和制图,对垂直方向空间变异和土壤三维制图考虑较少。近年来,三维地理信息技术和对地观测与探测技术的快速发展,极大地促进了土壤三维空间数据获... 土壤是具有高度异质性的复合体。早期的数字土壤制图研究主要关注水平方向的土壤空间变异和制图,对垂直方向空间变异和土壤三维制图考虑较少。近年来,三维地理信息技术和对地观测与探测技术的快速发展,极大地促进了土壤三维空间数据获取、三维空间推测、三维数据模型、三维模型构建和可视化方法等方面的研究。本文对三维空间土壤推测与土壤模型构建的已有方法进行梳理和评述,以期为三维数字土壤制图的应用和发展提供建议。以三维土壤制图、三维GIS、三维数据模型、三维地质建模、三维可视化、土壤空间变异、空间推测、克里格插值、土壤-景观分析、深度函数、机器学习、地统计学、随机模拟等为关键词检索Web of Science数据库,基于相关度、引用率和文献来源等因素进一步筛选出重点文献进行分析。归纳整理了土壤空间变异性、三维空间土壤推测、三维空间数据模型和三维模型构建等关键技术的现有研究体系,对各种三维推测和建模方法的优缺点和适用场景作出评价。针对目前研究中存在的垂直方向土壤数据稀少、土壤三维推测精度低、三维模型质量待提高等问题,提出一些可行的研究思路。 展开更多
关键词 三维空间 土壤空间变异性 土壤空间推测 三维数据模型 三维模型构建 数字土壤制图
在线阅读 下载PDF
HTI介质下五维地震脆性稳定预测方法研究
12
作者 李红梅 曲志鹏 +1 位作者 张云银 冯德永 《石油物探》 北大核心 2025年第1期151-162,共12页
岩石的脆性性质是页岩油气藏勘探开发过程中工程甜点预测的重要指标之一。以横向各向同性介质(HTI)为例,建立了各向异性假设下的脆性指示因子与背景杨氏模量、背景泊松比及各向异性参数的关系,形成了五维地震脆性稳定预测方法。首先,基... 岩石的脆性性质是页岩油气藏勘探开发过程中工程甜点预测的重要指标之一。以横向各向同性介质(HTI)为例,建立了各向异性假设下的脆性指示因子与背景杨氏模量、背景泊松比及各向异性参数的关系,形成了五维地震脆性稳定预测方法。首先,基于各向同性假设预测储层的杨氏模量和泊松比;其次,基于复频域反演获得各向异性参数的低频信息作为初始模型,结合方位振幅差异反演技术稳定预测储层的3个各向异性参数;最后,通过背景杨氏模量和泊松比以及各向异性参数计算各向异性储层的脆性指示因子,实现HTI介质脆性的稳定预测。该方法可以充分利用宽频地震数据的低频信息,并将六参数直接反演转化为二次三参数反演,理论上提升了反演过程的稳定性。实际资料应用结果表明,该方法针对页岩油的脆性预测具有良好的效果。 展开更多
关键词 五维地震脆性 初始模型 方位振幅差异 横向各向同性介质
在线阅读 下载PDF
无线传感网络高维时序数据状态估计算法研究
13
作者 邓俊华 屠敏 《传感技术学报》 北大核心 2025年第2期356-361,共6页
无线传感网络中数据量较大,准确估计存储节点中的数据状态,可以避免传感网络受高维度、冗余数据、网络状态等问题的干扰,进而提高传感网络的安全性。然而在传感网络中,对高维时序数据的状态估计一直是一个难点问题,为此,提出一种无线传... 无线传感网络中数据量较大,准确估计存储节点中的数据状态,可以避免传感网络受高维度、冗余数据、网络状态等问题的干扰,进而提高传感网络的安全性。然而在传感网络中,对高维时序数据的状态估计一直是一个难点问题,为此,提出一种无线传感网络高维时序数据状态估计算法。采用基于信息熵的PCA降维算法对传感节点中的高维时序数据进行降维处理,基于最优集成随机森林算法提取数据的特征,将提取的状态特征数据输入到贝叶斯估计模型中,并采用粒子滤波对模型求解,完成无线传感网络高维时序数据的状态估计。仿真结果表明:所提算法的估计时间始终在1.99 s以下,节点能耗小于22.1 J,估计结果与实际结果一致,具有良好的估计效果。 展开更多
关键词 无线传感网络 数据状态估计 贝叶斯估计模型 粒子滤波 高维时序数据 信息熵
在线阅读 下载PDF
基于多维感知调控的大规模BIM场景自适应调度方法研究
14
作者 周超 《河北水利电力学院学报》 2025年第1期75-80,共6页
针对大规模BIM场景调度过程中,存在帧率偏低、内存消耗与CPU平均消耗较高的问题,文中提出基于多维感知调控设计大规模BIM场景自适应调度方法。将大规模BIM场景空间数据分为DEM数据、建筑数据、纹理数据,分别实施空间数据分割。结合金字... 针对大规模BIM场景调度过程中,存在帧率偏低、内存消耗与CPU平均消耗较高的问题,文中提出基于多维感知调控设计大规模BIM场景自适应调度方法。将大规模BIM场景空间数据分为DEM数据、建筑数据、纹理数据,分别实施空间数据分割。结合金字塔结构与四叉树的数据索引机制实施分割数据块的空间数据索引,明确表达数据块的内部结构关系。基于多维感知调控模型与马尔可夫决策设计多维感知自适应调度算法,基于设计的索引机制实现大规模BIM场景的自适应调度。测试结果表明,设计方法能够实现极大规模的BIM场景调度,在调度数据规模达到1 000 GB时,其帧率可以保持在39 fps, CPU平均消耗低于1 800 MB,内存消耗较低。 展开更多
关键词 空间数据分割 多维感知调控模型 马尔可夫决策 大规模BIM场景 自适应调度
在线阅读 下载PDF
基于三维地球模型的中国大陆重力潮汐因子研究
15
作者 王振宇 赵倩 《地球与行星物理论评(中英文)》 2025年第1期83-93,共11页
潮汐现象是地球对日、月等星体引力的响应,重力潮汐因子对于揭示地球内部结构具有重要作用.中国地震局、中国科学院等自20世纪80年代开始布设首批重力仪,用于研究中国大陆固体潮空间分布特征,到目前为止已建成超过50个台站的重力观测网... 潮汐现象是地球对日、月等星体引力的响应,重力潮汐因子对于揭示地球内部结构具有重要作用.中国地震局、中国科学院等自20世纪80年代开始布设首批重力仪,用于研究中国大陆固体潮空间分布特征,到目前为止已建成超过50个台站的重力观测网络.本研究利用该网络的重力潮汐因子观测结果,结合考虑了横向非均匀效应的潮汐理论和三维地球模型,构建了中国大陆及周边地区的重力M_(2)、O_(1)因子分布模型.基于微扰理论,本研究发现P波速度扰动、S波速度扰动、密度扰动及综合效应对重力M_(2)因子影响的幅值范围分别为-0.12%至0.14%、-0.19%至0.17%、-0.08%至0.06%和-0.09%至0.11%(对O1因子的影响为-0.13%至0.28%、-0.27%至0.15%、-0.12%至0.10%和-0.15%至0.05%),影响最显著的区域为喜马拉雅造山带(负值)和华夏古陆东南缘(正值),体现了这些地区的特殊构造.本研究利用最小二乘配置方法对重力潮汐因子的理论值与实测值进行了融合,发现中国大陆及周边地区的重力M_(2)因子幅值范围为1.130至1.175,总体呈现周围低、中心高的特征.重力O1因子幅值范围为1.145至1.195,总体呈现从西北向东南逐渐升高的特征.以上结果可为中国大陆及周边地区重力潮汐因子、地球模型等相关研究提供参考. 展开更多
关键词 重力潮汐因子 三维地球模型 数据融合
在线阅读 下载PDF
一种基于泊松重建的三维地质面推演算法
16
作者 张可军 赵龙 罗永亮 《高速铁路技术》 2025年第2期15-21,共7页
三维地质面的生成是地质建模的关键,通常需要通过钻孔、物探、勘探等资料生成地质面,这不可避免地耗费大量人力和物力。本文提出了一种基于产状推演的三维地质面生成算法,在缺少钻孔和物探资料的情况下,也能准确生成三维地质面。该算法... 三维地质面的生成是地质建模的关键,通常需要通过钻孔、物探、勘探等资料生成地质面,这不可避免地耗费大量人力和物力。本文提出了一种基于产状推演的三维地质面生成算法,在缺少钻孔和物探资料的情况下,也能准确生成三维地质面。该算法首先利用产状推算出地质模型的大致走向,生成大量点云及其法向量;然后,利用泊松重建方法对点云进行全局重建,生成连续的三维地质表面。与传统的插值方法相比,泊松重建能够更好地处理不规则和稀疏的数据分布,提高模型的精度。研究结果表明,该算法在复杂地质条件下具有较高的适用性,可有效支撑铁路选线、地质勘探和资源评估等领域的应用。 展开更多
关键词 三维地质建模 泊松重建 地质面推演 点云数据处理
在线阅读 下载PDF
数字孪生水利动态时空数据底板构建研究 被引量:1
17
作者 崔培 张涛 +2 位作者 曾斌 赵杰 孙晓莹 《中国水利》 2025年第2期52-64,共13页
水利部大力推进数字孪生水利建设,正在通过统筹建设数字孪生流域、数字孪生水网、数字孪生工程,持续推进水利智能业务应用体系建设,构建具有“预报、预警、预演、预案”功能的数字孪生水利体系。数据底板是数字孪生水利建设的核心与关键... 水利部大力推进数字孪生水利建设,正在通过统筹建设数字孪生流域、数字孪生水网、数字孪生工程,持续推进水利智能业务应用体系建设,构建具有“预报、预警、预演、预案”功能的数字孪生水利体系。数据底板是数字孪生水利建设的核心与关键,目前数字孪生水利建设虽然取得了明显成效,但数据底板还需要向更加动态、多维和融合方向发展,构建时空数据架构和技术路线,为数字孪生水利构建坚实数据基础,支撑数字孪生水利体系新发展。从构建动态时空数据底板出发,以时间空间、数据资源、数据引擎和安全与标准四个维度探讨构建统一动态时空数据底板的架构思路,从水利对象、水利网格、水利主题、水利事件四个层次探索水利时空数据模型构建技术路线,提出“四维四层”架构的水利动态时空数据底板构建方法。 展开更多
关键词 数字孪生水利 多维融合 时空数据底板 数据模型构建 水利对象
在线阅读 下载PDF
煤矿灾害监测预警与融合展现平台研究
18
作者 陈运启 许金 谭凯 《煤矿机械》 2025年第1期200-204,共5页
灾害监测预警是智能化矿山的重点建设内容和验收要求。针对当前煤矿灾害监测预警数据接入规范不完整、地质保障系统三维模型不能共享、灾害监测预警结果无法融合展现等突出问题,制定了井巷工程地理信息、地质体及设备三维模型、灾害监... 灾害监测预警是智能化矿山的重点建设内容和验收要求。针对当前煤矿灾害监测预警数据接入规范不完整、地质保障系统三维模型不能共享、灾害监测预警结果无法融合展现等突出问题,制定了井巷工程地理信息、地质体及设备三维模型、灾害监测预警、灾害应急处置等数据的接入规范,研究了数据采集治理与存储、三维模型的快速构建和实时渲染、多种灾害监测预警融合展现等技术,研发了煤矿灾害监测预警与融合展现平台。现场应用表明,该平台利用已有地质保障系统建设成果,实现了基于三维模型的监测预警数据的融合展现,有效提升了煤矿灾害监测预警的表达能力,为煤矿安全生产和灾害应急处置提供了技术支撑。 展开更多
关键词 灾害监测 灾害预警 地质保障 三维模型 数据规范 融合展现
在线阅读 下载PDF
基于Transformer的高维度时序数据分类方法
19
作者 许阳 孙永鑫 +1 位作者 王磊 王骋昊 《电力大数据》 2025年第2期47-56,共10页
为了应对高维度时序数据分类中遇到的数据噪声大、维度冗余以及长距离依赖关系难以捕捉等挑战,该文提出了一种基于Transformer架构的新方法。通过移动平均滤波和标准化处理来降低数据噪声并统一特征尺度;采用主成分分析(principle compo... 为了应对高维度时序数据分类中遇到的数据噪声大、维度冗余以及长距离依赖关系难以捕捉等挑战,该文提出了一种基于Transformer架构的新方法。通过移动平均滤波和标准化处理来降低数据噪声并统一特征尺度;采用主成分分析(principle component analysis,PCA)进行数据分割和维度压缩,以提高模型计算效率。在此基础上,利用Transformer模型的自注意力机制有效捕捉时间序列中的长期依赖性,增强了对复杂模式的理解能力。实验结果表明,所提方法在基准数据集上取得了优异的分类效果,不仅提升了分类精度,还加快了模型训练速度,为高维度时序数据的有效分类提供了一个高效、可靠的解决方案。特别地,该方法在电力爬塔动作规范性分类、电力设备的状态监测与故障诊断等输电工程领域具有显著的应用价值。 展开更多
关键词 高维度时序数据 Transformer模型 维度压缩 主成分分析 时间序列分类
在线阅读 下载PDF
基于二、三维GIS的城市动态可视化
20
作者 吴瑶瑶 盛松 《北京测绘》 2025年第4期473-478,共6页
城市动态可视化作为城市管理规划以及决策支持中的重要支持,目前依旧存在可视化质量不高、效率相对较低的问题。本文针对此问题提出基于二、三维地理信息系统(GIS)的城市动态可视化研究方法。城市的二维GIS数据与三维GIS数据的一体化通... 城市动态可视化作为城市管理规划以及决策支持中的重要支持,目前依旧存在可视化质量不高、效率相对较低的问题。本文针对此问题提出基于二、三维地理信息系统(GIS)的城市动态可视化研究方法。城市的二维GIS数据与三维GIS数据的一体化通过数据模型实现,以保证二、三维GIS数据的无缝集成。同时通过自适应网格划分以及预计算遮挡剔除,进一步提高城市空间划分网格可见性判定的实时性以及准确性。为保证渲染性能以及渲染效果,结合动态调度进行优化。经过实验验证,基于二、三维GIS的城市动态可视化方法具有良好的动态可视化性能,在城市场景渲染以及系统运算性能上均具有优势。 展开更多
关键词 二、三维地理信息系统(GIS) 数据模型 城市可视化 动态调度 网格划分
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部