In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a f...In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.展开更多
Novel view synthesis has attracted tremendous research attention recently for its applications in virtual reality and immersive telepresence.Rendering a locally immersive light field(LF)based on arbitrary large baseli...Novel view synthesis has attracted tremendous research attention recently for its applications in virtual reality and immersive telepresence.Rendering a locally immersive light field(LF)based on arbitrary large baseline RGB references is a challenging problem that lacks efficient solutions with existing novel view synthesis techniques.In this work,we aim at truthfully rendering local immersive novel views/LF images based on large baseline LF captures and a single RGB image in the target view.To fully explore the precious information from source LF captures,we propose a novel occlusion-aware source sampler(OSS)module which efficiently transfers the pixels of source views to the target view′s frustum in an occlusion-aware manner.An attention-based deep visual fusion module is proposed to fuse the revealed occluded background content with a preliminary LF into a final refined LF.The proposed source sampling and fusion mechanism not only helps to provide information for occluded regions from varying observation angles,but also proves to be able to effectively enhance the visual rendering quality.Experimental results show that our proposed method is able to render high-quality LF images/novel views with sparse RGB references and outperforms state-of-the-art LF rendering and novel view synthesis methods.展开更多
基金National Key R&D Program of China(2021YFC3000905)Open Research Program of the State Key Laboratory of Severe Weather(2022LASW-B09)National Natural Science Foundation of China(42375010)。
文摘In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.
基金the Theme-based Research Scheme,Research Grants Council of Hong Kong(No.T45-205/21-N).
文摘Novel view synthesis has attracted tremendous research attention recently for its applications in virtual reality and immersive telepresence.Rendering a locally immersive light field(LF)based on arbitrary large baseline RGB references is a challenging problem that lacks efficient solutions with existing novel view synthesis techniques.In this work,we aim at truthfully rendering local immersive novel views/LF images based on large baseline LF captures and a single RGB image in the target view.To fully explore the precious information from source LF captures,we propose a novel occlusion-aware source sampler(OSS)module which efficiently transfers the pixels of source views to the target view′s frustum in an occlusion-aware manner.An attention-based deep visual fusion module is proposed to fuse the revealed occluded background content with a preliminary LF into a final refined LF.The proposed source sampling and fusion mechanism not only helps to provide information for occluded regions from varying observation angles,but also proves to be able to effectively enhance the visual rendering quality.Experimental results show that our proposed method is able to render high-quality LF images/novel views with sparse RGB references and outperforms state-of-the-art LF rendering and novel view synthesis methods.