Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(H...Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.展开更多
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestin...Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestinal bacteria are promising potential producers of novel carbohydrate-active enzymes with unique properties.Here,a novel glycoside hydrolase family 128(GH128)laminarinase OUC-BsLam26 from the intestinal bacterium Bacteroides sp.CBA7301 was heterologously expressed and characterized.The recombinant OUC-BsLam26 with a molecular mass of 49.86 kDa exhibits highest activity(6.60 U/mg)at 45℃ and pH 6.0,which shows noticeable temperature and pH stability.The purified OUC-BsLam26 could degrade laminarin via an endo-type mode with the generation of laminaripentaose,laminaritetraose,laminaritriose,and laminaribiose,among them,laminaritetraose is the principal product,which accounts for 45.25% of the total products,which is significantly different from the reported GH128 laminarinases.The minimum recognition substrate of OUC-BsLam26 is laminarihexaose.Furthermore,OUC-BsLam26 also could catalyze the transglycosylation process with the production of some novel glycosides.Altogether,the intestinal bacterium Bacteroides sp.CBA7301 contains laminarinase with unique product composition and OUC-BsLam26 is a hopeful bio-catalyst with the potential to produce laminaritetraose and some novel glycosides.展开更多
As a member of the Cancer-Testis Antigens,the Melanoma-associated antigen(MAGE)family is typically expressed in normal tissues such as the testis.However,in various types of tumor cells,their expression is abnormally ...As a member of the Cancer-Testis Antigens,the Melanoma-associated antigen(MAGE)family is typically expressed in normal tissues such as the testis.However,in various types of tumor cells,their expression is abnormally activated,which is associated with multiple critical processes of tumor cells,including proliferation,apoptosis,immune evasion,DNA damage repair,and metastasis.The abnormal expression of MAGE family genes in multiple cancers and their multifaceted roles in tumor biology have made them an important target in cancer research and treatment.This review comprehensively explores various aspects of the relationship between the MAGE family and cancer,including the molecular characteristics of its members,transcriptional regulation mechanisms,expression patterns in different cancers,phenotypes and oncogenic mechanisms,poor clinical prognosis and potential as targets for immunotherapy.The expression patterns of these genes are closely linked to the clinical features of tumors,providing molecular markers and potential therapeutic targets for the early diagnosis,treatment,and prognostic assessment of cancer.展开更多
In the task of Facial Expression Recognition(FER),data uncertainty has been a critical factor affecting performance,typically arising from the ambiguity of facial expressions,low-quality images,and the subjectivity of...In the task of Facial Expression Recognition(FER),data uncertainty has been a critical factor affecting performance,typically arising from the ambiguity of facial expressions,low-quality images,and the subjectivity of annotators.Tracking the training history reveals that misclassified samples often exhibit high confidence and excessive uncertainty in the early stages of training.To address this issue,we propose an uncertainty-based robust sample selection strategy,which combines confidence error with RandAugment to improve image diversity,effectively reducing overfitting caused by uncertain samples during deep learning model training.To validate the effectiveness of the proposed method,extensive experiments were conducted on FER public benchmarks.The accuracy obtained were 89.08%on RAF-DB,63.12%on AffectNet,and 88.73%on FERPlus.展开更多
Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situ...Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.展开更多
Hypertension(HT)is a major risk factor for cardiovascular diseases.Krüppel-like factors(KLFs)are important transcription factors in eukaryotes.Studies have reported that KLF4 and KLF5 are correlated with several ...Hypertension(HT)is a major risk factor for cardiovascular diseases.Krüppel-like factors(KLFs)are important transcription factors in eukaryotes.Studies have reported that KLF4 and KLF5 are correlated with several cardiovascular diseases,but population-based studies on associations between HT and KLF4 or KLF5 have rarely been reported.Therefore,the current study investigated the associations of genetic variants and m RNA expression levels of KLF4 and KLF5 with HT,as well as the effects of antihypertensive drugs on the expression levels of these genes.The associations of one single-nucleotide polymorphism(SNP)in KLF4 and three SNPs in KLF5with HT were analyzed using a combination of case-control and cohort studies.The study populations were selected from a community-based cohort in four regions of Jiangsu province.The risks of HT were estimated through logistic and Cox regression analyses.In addition,m RNA expression levels of KLF4 and KLF5 were detected in 246 controls and 385 HT cases selected from the aforementioned cohort.Among the HT cases,263were not taking antihypertensive drugs[AHD(-)]and 122 were taking antihypertensive drugs[AHD(+)].In the case-control study,SNP rs9573096(C>T)in KLF5 was significantly associated with an increased risk of HT in the additive model(adjusted odds ratio[OR],1.106;95%confidence interval[CI],1.009 to 1.212).In the cohort study of the normotensive population,rs9573096 in KLF5 was also significantly associated with an increased risk of HT in the additive model(adjusted hazards ratio[HR],1.199;95%CI,1.070 to 1.344).KLF4 and KLF5m RNA expression levels were significantly higher in the AHD(-)group than in the control group(P<0.05),but lower in the AHD(+)group than in the AHD(-)group(P<0.05).The current study demonstrated the associations of KLF4 and KLF5 genetic variants with hypertension,as well as the association of the indicative variations in m RNA expression levels of KLF4 and KLF5 with the risk of hypertension and antihypertensive treatment.展开更多
Commercial cultivars of garlic,a popular condiment,are sterile,making genetic variation and germplasm innovation of this plant challenging.Understanding mechanism of gamete sterility in garlic and their key regulatory...Commercial cultivars of garlic,a popular condiment,are sterile,making genetic variation and germplasm innovation of this plant challenging.Understanding mechanism of gamete sterility in garlic and their key regulatory networks is therefore important for fertility restoration.In this work,we conducted a detailed phenotypic analysis of fertile and sterile garlic genotypes and found that enlargement of topset in the inflorescence of sterile genotypes led to abnormal flowers.Additional cytological observations showed that aberrant meiotic cytokinesis in sterile garlic ultimately resulted in pollen degeneration.Transcriptomics analysis of sterile and fertile genotypes identified possible molecular mechanisms underlying gamete abortion.A total of 100710 differentially expressed genes(DEGs)between the fertile and sterile garlic flowers at three stages of gamete development were identified,many of which were involved in homologous chromosome synapsis during meiosis,MYB transcription factor regulation,ribosome biogenesis and plant hormone signal transduction.Taken together,these results provide insight into the molecular mechanisms and regulatory networks underlying gamete development in garlic and point to a set of candidate genes for further functional characterization.展开更多
Background Mobile element variants(MEVs)have a significant and complex impact on genomic diversity and phe-notypic traits.However,the quantity,distribution,and relationship with gene expression and complex traits of M...Background Mobile element variants(MEVs)have a significant and complex impact on genomic diversity and phe-notypic traits.However,the quantity,distribution,and relationship with gene expression and complex traits of MEVs in the pig genome remain poorly understood.Results We constructed the most comprehensive porcine MEV library based on high-depth whole genome sequencing(WGS)data from 747 pigs across 59 breeds worldwide.This database identified a total of 147,993 poly-morphic MEVs,including 121,099 short interspersed nuclear elements(SINEs),26,053 long interspersed nuclear elements(LINEs),802 long terminal repeats(LTRs),and 39 other transposons,among which 54%are newly discovered.We found that MEVs are unevenly distributed across the genome and are strongly influenced by negative selec-tion effects.Importantly,we identified 514,530,and 584 candidate MEVs associated with population differentiation,domestication,and breed formation,respectively.For example,a significantly differentiated MEV is located in the ATRX intron between Asian and European pigs,whereas ATRX is also differentially expressed between Asian and European pigs in muscle tissue.In addition,we identified 4,169 expressed MEVs(eMEVs)significantly associated with gene expression and 6,914 splicing MEVs(sMEVs)associated with gene splicing based on RNA-seq data from 266 porcine liver tissues.These eMEVs and sMEVs explain 6.24%and 9.47%,respectively,of the observed cis-heritability and high-light the important role of MEVs in the regulation of gene expression.Finally,we provide a high-quality SNP–MEV reference haplotype panel to impute MEV genotypes from genome-wide SNPs.Notably,we identified a candidate MEV significantly associated with total teat number,demonstrating the functionality of this reference panel.Conclusions The present investigation demonstrated the importance of MEVs in pigs in terms of population diversity,gene expression and phenotypic traits,which may provide useful resources and theoretical support for pig genetics and breeding.展开更多
This study explores the integration path of ideological and political education in the course Design Thinking and Expression of environmental art design,aiming to enhance students’innovative thinking,social responsib...This study explores the integration path of ideological and political education in the course Design Thinking and Expression of environmental art design,aiming to enhance students’innovative thinking,social responsibility,and awareness of sustainable development.Based on the core philosophy of design thinking(people-oriented,problem-solving,and interdisciplinary collaboration)and the elements of ideological and political education in courses(moral education,cultural confidence,sustainable development,and social equity),the study proposes implementation paths for optimizing course objectives,adjusting course content,innovating teaching methods,and optimizing the evaluation system.Through project-based learning,situational teaching,and interdisciplinary collaboration,combined with practical cases such as historical district renewal,environmental design for rural revitalization,and green commercial space design,it has been verified that the effective integration of ideological and political elements in courses can enhance students’cultural identity,sense of social responsibility,and design innovation ability.This study provides theoretical support and practical demonstration for the ideological and political reform of environmental art design courses.In the future,interdisciplinary collaboration can be further deepened,social practice applications can be expanded,the evaluation system can be improved,and the systematic development of ideological and political courses can be promoted.展开更多
Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development...Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.展开更多
BACKGROUND Colorectal cancer(CRC)is one of the most common malignant gastrointestinal tumors worldwide,with high incidence and mortality rates.AIM To investigate the expression significance of the chromatin-remodeling...BACKGROUND Colorectal cancer(CRC)is one of the most common malignant gastrointestinal tumors worldwide,with high incidence and mortality rates.AIM To investigate the expression significance of the chromatin-remodeling protein MORC family CW-type zinc finger 4(MORC4)as a biomarker in CRC patients,and to explore its relationship with pathological features and prognosis.METHODS A total of 143 CRC specimens and 57 adjacent tissue specimens,surgically removed from our hospital between January 2020 and January 2021,were collected.MORC4 protein expression was assessed using immunohistochemistry after paraffin embedding.The relationship between MORC4 protein expression and clinicopathological characteristics of patients was analyzed.Kaplan-Meier survival curves were plotted to analyze the relationship between MORC4 protein expression and prognosis in CRC patients.RESULTS Compared with adjacent tissues,the expression rate of MORC4 protein in CRC tissues was significantly higher(P<0.05).No significant difference was observed in the high expression rate of MORC4 protein in CRC tissues among patients of different gender,age,tumor location,tumor diameter,and primary tumor status(P>0.05).However,significant differences were found in the high expression rate of MORC4 protein in patients with different degrees of differentiation,lymph node metastasis,distant metastasis,tumor-lymph node-metastasis stage,and serum carcinoembryonic antigen levels(P<0.05).Compared with patients with low MORC4 expression,patients with high MORC4 expression had a worse prognosis(P<0.05).CONCLUSION The upregulation of MORC4 expression in CRC patients is closely related to disease severity and prognosis,suggesting its potential as an evaluation biomarker,which warrants further investigation.展开更多
Small heat shock proteins(sHSPs)act as molecular chaperones that can prevent the accumulation of damaged proteins during abiotic stress,especially heat shock,but the mechanism is not clear.To study the function of sHS...Small heat shock proteins(sHSPs)act as molecular chaperones that can prevent the accumulation of damaged proteins during abiotic stress,especially heat shock,but the mechanism is not clear.To study the function of sHSPs in Lenzites gibbosa,a common polypore in northern temperate forests that causes spongy white rot of broadleaf trees,under temperature stress,L.gibbosa mycelia were grown at 25℃ for 9 d,treated at 33℃ for 15,30,60,and 120 min before sequencing the transcriptomes.From among 32 heat shock protein(HSP)genes found in the screen of the transcriptome data,a highly expressed gene was cloned and named Lghsp17.4.RT-qPCR was used to analyze the expression of the gene Lghsp17.4 under heat shock and dye stress.Both treatments induced higher expression of Lghsp17.4 at the transcriptional level,indicating that Lghsp17.4 might function in the response to heat stress and dye degradation.We previously found that L.gibbosa generally had a heat shock reaction(HSR)during degradation of aromatic compounds,and HSPs were always produced with manganese peroxidases(MnPs)and other lignin-degrading enzymes.Therefore,we measured the activity of MnPs in L.gibbosa after 33℃ heat shock to analyze the relationship between MnPs expression and Lghsp17.4 expression.Heat shocks of 0–30 min increased MnPs activity,and the change in MnPs activity were closely positively correlated with the expression levels of Lghsp17.4 over time,indicating a potential connection and interaction between LgHSP17.4 and MnPs during the HSR in L.gibbosa.Thus,LgHSP17.4 might have a positive regulatory effect on the HSR in L.gibbosa and be a critical component of a stress resistance mechanism.展开更多
Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its im...Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration.A large number of experiments have proved that CO_(2) interaction time(T),saturation pressure(P)and other parameters have significant effects on coal strength.However,accurate evaluation of CO_(2)-induced alterations in coal strength is still a difficult problem,so it is particularly important to establish accurate and efficient prediction models.This study explored the application of advancedmachine learning(ML)algorithms and Gene Expression Programming(GEP)techniques to predict CO_(2)-induced alterations in coal strength.Sixmodels were developed,including three metaheuristic-optimized XGBoost models(GWO-XGBoost,SSA-XGBoost,PO-XGBoost)and three GEP models(GEP-1,GEP-2,GEP-3).Comprehensive evaluations using multiple metrics revealed that all models demonstrated high predictive accuracy,with the SSA-XGBoost model achieving the best performance(R2—Coefficient of determination=0.99396,RMSE—Root Mean Square Error=0.62102,MAE—Mean Absolute Error=0.36164,MAPE—Mean Absolute Percentage Error=4.8101%,RPD—Residual Predictive Deviation=13.4741).Model interpretability analyses using SHAP(Shapley Additive exPlanations),ICE(Individual Conditional Expectation),and PDP(Partial Dependence Plot)techniques highlighted the dominant role of fixed carbon content(FC)and significant interactions between FC and CO_(2) saturation pressure(P).Theresults demonstrated that the proposedmodels effectively address the challenges of CO_(2)-induced strength prediction,providing valuable insights for geological storage safety and environmental applications.展开更多
Assessing the stability of pillars in underground mines(especially in deep underground mines)is a critical concern during both the design and the operational phases of a project.This study mainly focuses on developing...Assessing the stability of pillars in underground mines(especially in deep underground mines)is a critical concern during both the design and the operational phases of a project.This study mainly focuses on developing two practical models to predict pillar stability status.For this purpose,two robust models were developed using a database including 236 case histories from seven underground hard rock mines,based on gene expression programming(GEP)and decision tree-support vector machine(DT-SVM)hybrid algorithms.The performance of the developed models was evaluated based on four common statistical criteria(sensitivity,specificity,Matthews correlation coefficient,and accuracy),receiver operating characteristic(ROC)curve,and testing data sets.The results showed that the GEP and DT-SVM models performed exceptionally well in assessing pillar stability,showing a high level of accuracy.The DT-SVM model,in particular,outperformed the GEP model(accuracy of 0.914,sensitivity of 0.842,specificity of 0.929,Matthews correlation coefficient of 0.767,and area under the ROC of 0.897 for the test data set).Furthermore,upon comparing the developed models with the previous ones,it was revealed that both models can effectively determine the condition of pillar stability with low uncertainty and acceptable accuracy.This suggests that these models could serve as dependable tools for project managers,aiding in the evaluation of pillar stability during the design and operational phases of mining projects,despite the inherent challenges in this domain.展开更多
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile...Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However...Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.展开更多
BACKGROUND Cyclin-dependent kinase 9(CDK9)expression and autophagy in colorectal cancer(CRC)tissues has not been widely studied.CDK9,a key regulator of transcription,may influence the occurrence and progression of CRC...BACKGROUND Cyclin-dependent kinase 9(CDK9)expression and autophagy in colorectal cancer(CRC)tissues has not been widely studied.CDK9,a key regulator of transcription,may influence the occurrence and progression of CRC.The expression of auto-phagy-related genes BECN1 and drug resistance factor ABCG2 may also play a role in CRC.Under normal physiological conditions,autophagy can inhibit tumorigenesis,but once a tumor forms,autophagy may promote tumor growth.Therefore,understanding the relationship between autophagy and cancer,partic-ularly how autophagy promotes tumor growth after its formation,is a key motivation for this research.AIM To investigate the relationship between CDK9 expression and autophagy in CRC,assess differences in autophagy between left and right colon cancer,and analyze the associations of autophagy-related genes with clinical features and prognosis.METHODS We collected tumor tissues and paracarcinoma tissues from colon cancer patients with liver metastasis to observe the level of autophagy in tissues with high levels of CDK9 and low levels of CDK9.We also collected primary tissue from left and right colon cancer patients with liver metastasis to compare the autophagy levels and the expression of BECN1 and ABCG2 in the tumor and paracarcinoma tissues.RESULTS The incidence of autophagy and the expression of BECN1 and ABCG2 were different in left and right colon cancer,and autophagy might be involved in the occurrence of chemotherapy resistance.Further analysis of the rela-tionship between the expression of autophagy-related genes CDK9,ABCG2,and BECN1 and the clinical features and prognosis of colorectal cancer showed that the high expression of CDK9 indicated a poor prognosis in colorectal cancer.CONCLUSION This study laid the foundation for further research on the combination of CDK9 inhibitors and autophagy inhibitors in the treatment of patients with CRC.展开更多
文摘Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.
基金supported by the National Natural Science Foundation of China(32072159)Natural Science Foundation of Hainan Province(322QN338)+4 种基金Young Talent of Lifting Engineering for Science and Technology in Shandong,China(SDAST2021qt18)Qingdao Science and Technology Plan Key Research and Development Project(22-3-3-hygg-28-hy)Fundamental Research Funds for the Central Universities(202262003)Taishan Scholar Project of Shandong Province(tsqn202312099)Support Program for Youth Innovation Technology in Colleges and Universities of Shandong Province(2023KJ041)。
文摘Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestinal bacteria are promising potential producers of novel carbohydrate-active enzymes with unique properties.Here,a novel glycoside hydrolase family 128(GH128)laminarinase OUC-BsLam26 from the intestinal bacterium Bacteroides sp.CBA7301 was heterologously expressed and characterized.The recombinant OUC-BsLam26 with a molecular mass of 49.86 kDa exhibits highest activity(6.60 U/mg)at 45℃ and pH 6.0,which shows noticeable temperature and pH stability.The purified OUC-BsLam26 could degrade laminarin via an endo-type mode with the generation of laminaripentaose,laminaritetraose,laminaritriose,and laminaribiose,among them,laminaritetraose is the principal product,which accounts for 45.25% of the total products,which is significantly different from the reported GH128 laminarinases.The minimum recognition substrate of OUC-BsLam26 is laminarihexaose.Furthermore,OUC-BsLam26 also could catalyze the transglycosylation process with the production of some novel glycosides.Altogether,the intestinal bacterium Bacteroides sp.CBA7301 contains laminarinase with unique product composition and OUC-BsLam26 is a hopeful bio-catalyst with the potential to produce laminaritetraose and some novel glycosides.
基金supported by Startup Fund for Young Faculty at SJTU(SFYF at SJTU)(No.24X010500176).
文摘As a member of the Cancer-Testis Antigens,the Melanoma-associated antigen(MAGE)family is typically expressed in normal tissues such as the testis.However,in various types of tumor cells,their expression is abnormally activated,which is associated with multiple critical processes of tumor cells,including proliferation,apoptosis,immune evasion,DNA damage repair,and metastasis.The abnormal expression of MAGE family genes in multiple cancers and their multifaceted roles in tumor biology have made them an important target in cancer research and treatment.This review comprehensively explores various aspects of the relationship between the MAGE family and cancer,including the molecular characteristics of its members,transcriptional regulation mechanisms,expression patterns in different cancers,phenotypes and oncogenic mechanisms,poor clinical prognosis and potential as targets for immunotherapy.The expression patterns of these genes are closely linked to the clinical features of tumors,providing molecular markers and potential therapeutic targets for the early diagnosis,treatment,and prognostic assessment of cancer.
文摘In the task of Facial Expression Recognition(FER),data uncertainty has been a critical factor affecting performance,typically arising from the ambiguity of facial expressions,low-quality images,and the subjectivity of annotators.Tracking the training history reveals that misclassified samples often exhibit high confidence and excessive uncertainty in the early stages of training.To address this issue,we propose an uncertainty-based robust sample selection strategy,which combines confidence error with RandAugment to improve image diversity,effectively reducing overfitting caused by uncertain samples during deep learning model training.To validate the effectiveness of the proposed method,extensive experiments were conducted on FER public benchmarks.The accuracy obtained were 89.08%on RAF-DB,63.12%on AffectNet,and 88.73%on FERPlus.
基金supported by China Academy of Railway Sciences Corporation Limited(No.2021YJ127).
文摘Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.81872686 and 82173611)the National Key Research and Development Program of China(Grant No.2018YFC2000703)the Priority Academic Program for the Development of Jiangsu Higher Education Institutions(Public Health and Preventive Medicine)。
文摘Hypertension(HT)is a major risk factor for cardiovascular diseases.Krüppel-like factors(KLFs)are important transcription factors in eukaryotes.Studies have reported that KLF4 and KLF5 are correlated with several cardiovascular diseases,but population-based studies on associations between HT and KLF4 or KLF5 have rarely been reported.Therefore,the current study investigated the associations of genetic variants and m RNA expression levels of KLF4 and KLF5 with HT,as well as the effects of antihypertensive drugs on the expression levels of these genes.The associations of one single-nucleotide polymorphism(SNP)in KLF4 and three SNPs in KLF5with HT were analyzed using a combination of case-control and cohort studies.The study populations were selected from a community-based cohort in four regions of Jiangsu province.The risks of HT were estimated through logistic and Cox regression analyses.In addition,m RNA expression levels of KLF4 and KLF5 were detected in 246 controls and 385 HT cases selected from the aforementioned cohort.Among the HT cases,263were not taking antihypertensive drugs[AHD(-)]and 122 were taking antihypertensive drugs[AHD(+)].In the case-control study,SNP rs9573096(C>T)in KLF5 was significantly associated with an increased risk of HT in the additive model(adjusted odds ratio[OR],1.106;95%confidence interval[CI],1.009 to 1.212).In the cohort study of the normotensive population,rs9573096 in KLF5 was also significantly associated with an increased risk of HT in the additive model(adjusted hazards ratio[HR],1.199;95%CI,1.070 to 1.344).KLF4 and KLF5m RNA expression levels were significantly higher in the AHD(-)group than in the control group(P<0.05),but lower in the AHD(+)group than in the AHD(-)group(P<0.05).The current study demonstrated the associations of KLF4 and KLF5 genetic variants with hypertension,as well as the association of the indicative variations in m RNA expression levels of KLF4 and KLF5 with the risk of hypertension and antihypertensive treatment.
基金supported by the National Characteristic Vegetable Industry Technology System of China(Grant No.CARS24-A-07)the Jiangsu Modern Agricultural Industry Technology System Construction Special Fund(Grant No.JATS[2023]050)Xuzhou Academy of Agricultural Sciences Research Fund Project(Grant No.XM2021003)。
文摘Commercial cultivars of garlic,a popular condiment,are sterile,making genetic variation and germplasm innovation of this plant challenging.Understanding mechanism of gamete sterility in garlic and their key regulatory networks is therefore important for fertility restoration.In this work,we conducted a detailed phenotypic analysis of fertile and sterile garlic genotypes and found that enlargement of topset in the inflorescence of sterile genotypes led to abnormal flowers.Additional cytological observations showed that aberrant meiotic cytokinesis in sterile garlic ultimately resulted in pollen degeneration.Transcriptomics analysis of sterile and fertile genotypes identified possible molecular mechanisms underlying gamete abortion.A total of 100710 differentially expressed genes(DEGs)between the fertile and sterile garlic flowers at three stages of gamete development were identified,many of which were involved in homologous chromosome synapsis during meiosis,MYB transcription factor regulation,ribosome biogenesis and plant hormone signal transduction.Taken together,these results provide insight into the molecular mechanisms and regulatory networks underlying gamete development in garlic and point to a set of candidate genes for further functional characterization.
基金National Key Research and Development Program of China(2022YFF1000103)Postdoctoral Fellowship Program of CPSF under Grant Number GZC20240620.
文摘Background Mobile element variants(MEVs)have a significant and complex impact on genomic diversity and phe-notypic traits.However,the quantity,distribution,and relationship with gene expression and complex traits of MEVs in the pig genome remain poorly understood.Results We constructed the most comprehensive porcine MEV library based on high-depth whole genome sequencing(WGS)data from 747 pigs across 59 breeds worldwide.This database identified a total of 147,993 poly-morphic MEVs,including 121,099 short interspersed nuclear elements(SINEs),26,053 long interspersed nuclear elements(LINEs),802 long terminal repeats(LTRs),and 39 other transposons,among which 54%are newly discovered.We found that MEVs are unevenly distributed across the genome and are strongly influenced by negative selec-tion effects.Importantly,we identified 514,530,and 584 candidate MEVs associated with population differentiation,domestication,and breed formation,respectively.For example,a significantly differentiated MEV is located in the ATRX intron between Asian and European pigs,whereas ATRX is also differentially expressed between Asian and European pigs in muscle tissue.In addition,we identified 4,169 expressed MEVs(eMEVs)significantly associated with gene expression and 6,914 splicing MEVs(sMEVs)associated with gene splicing based on RNA-seq data from 266 porcine liver tissues.These eMEVs and sMEVs explain 6.24%and 9.47%,respectively,of the observed cis-heritability and high-light the important role of MEVs in the regulation of gene expression.Finally,we provide a high-quality SNP–MEV reference haplotype panel to impute MEV genotypes from genome-wide SNPs.Notably,we identified a candidate MEV significantly associated with total teat number,demonstrating the functionality of this reference panel.Conclusions The present investigation demonstrated the importance of MEVs in pigs in terms of population diversity,gene expression and phenotypic traits,which may provide useful resources and theoretical support for pig genetics and breeding.
基金“Curriculum Ideological and Political Education”Demonstration Project of Chongqing University of Posts and Telecommunications:Design Thinking and Expression(Environmental Design)(XKCSZ2251)Construction and Practice of the Ability Training System for“Internet+”Design Talents to Serve Rural Revitalization(233231)。
文摘This study explores the integration path of ideological and political education in the course Design Thinking and Expression of environmental art design,aiming to enhance students’innovative thinking,social responsibility,and awareness of sustainable development.Based on the core philosophy of design thinking(people-oriented,problem-solving,and interdisciplinary collaboration)and the elements of ideological and political education in courses(moral education,cultural confidence,sustainable development,and social equity),the study proposes implementation paths for optimizing course objectives,adjusting course content,innovating teaching methods,and optimizing the evaluation system.Through project-based learning,situational teaching,and interdisciplinary collaboration,combined with practical cases such as historical district renewal,environmental design for rural revitalization,and green commercial space design,it has been verified that the effective integration of ideological and political elements in courses can enhance students’cultural identity,sense of social responsibility,and design innovation ability.This study provides theoretical support and practical demonstration for the ideological and political reform of environmental art design courses.In the future,interdisciplinary collaboration can be further deepened,social practice applications can be expanded,the evaluation system can be improved,and the systematic development of ideological and political courses can be promoted.
基金supported by the National Key Research and Development Program of China(No.2021YFD2200304)FundamentalResearch Funds for the Central Universities(2572022DQ08)the National Natural Science Foundation of China(No32171738).
文摘Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.
基金was approved by the Ethics Committee of Cangzhou Central Hospital,No.29795793.
文摘BACKGROUND Colorectal cancer(CRC)is one of the most common malignant gastrointestinal tumors worldwide,with high incidence and mortality rates.AIM To investigate the expression significance of the chromatin-remodeling protein MORC family CW-type zinc finger 4(MORC4)as a biomarker in CRC patients,and to explore its relationship with pathological features and prognosis.METHODS A total of 143 CRC specimens and 57 adjacent tissue specimens,surgically removed from our hospital between January 2020 and January 2021,were collected.MORC4 protein expression was assessed using immunohistochemistry after paraffin embedding.The relationship between MORC4 protein expression and clinicopathological characteristics of patients was analyzed.Kaplan-Meier survival curves were plotted to analyze the relationship between MORC4 protein expression and prognosis in CRC patients.RESULTS Compared with adjacent tissues,the expression rate of MORC4 protein in CRC tissues was significantly higher(P<0.05).No significant difference was observed in the high expression rate of MORC4 protein in CRC tissues among patients of different gender,age,tumor location,tumor diameter,and primary tumor status(P>0.05).However,significant differences were found in the high expression rate of MORC4 protein in patients with different degrees of differentiation,lymph node metastasis,distant metastasis,tumor-lymph node-metastasis stage,and serum carcinoembryonic antigen levels(P<0.05).Compared with patients with low MORC4 expression,patients with high MORC4 expression had a worse prognosis(P<0.05).CONCLUSION The upregulation of MORC4 expression in CRC patients is closely related to disease severity and prognosis,suggesting its potential as an evaluation biomarker,which warrants further investigation.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.:2572016AA04)Northeast Asia Biodiversity Research Center Double First class Funds(Grant No.:411146030416 and No.:411147021003).
文摘Small heat shock proteins(sHSPs)act as molecular chaperones that can prevent the accumulation of damaged proteins during abiotic stress,especially heat shock,but the mechanism is not clear.To study the function of sHSPs in Lenzites gibbosa,a common polypore in northern temperate forests that causes spongy white rot of broadleaf trees,under temperature stress,L.gibbosa mycelia were grown at 25℃ for 9 d,treated at 33℃ for 15,30,60,and 120 min before sequencing the transcriptomes.From among 32 heat shock protein(HSP)genes found in the screen of the transcriptome data,a highly expressed gene was cloned and named Lghsp17.4.RT-qPCR was used to analyze the expression of the gene Lghsp17.4 under heat shock and dye stress.Both treatments induced higher expression of Lghsp17.4 at the transcriptional level,indicating that Lghsp17.4 might function in the response to heat stress and dye degradation.We previously found that L.gibbosa generally had a heat shock reaction(HSR)during degradation of aromatic compounds,and HSPs were always produced with manganese peroxidases(MnPs)and other lignin-degrading enzymes.Therefore,we measured the activity of MnPs in L.gibbosa after 33℃ heat shock to analyze the relationship between MnPs expression and Lghsp17.4 expression.Heat shocks of 0–30 min increased MnPs activity,and the change in MnPs activity were closely positively correlated with the expression levels of Lghsp17.4 over time,indicating a potential connection and interaction between LgHSP17.4 and MnPs during the HSR in L.gibbosa.Thus,LgHSP17.4 might have a positive regulatory effect on the HSR in L.gibbosa and be a critical component of a stress resistance mechanism.
基金partially supported by the National Natural Science Foundation of China(42177164,52474121)the Outstanding Youth Project of Hunan Provincial Department of Education(23B0008).
文摘Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration.A large number of experiments have proved that CO_(2) interaction time(T),saturation pressure(P)and other parameters have significant effects on coal strength.However,accurate evaluation of CO_(2)-induced alterations in coal strength is still a difficult problem,so it is particularly important to establish accurate and efficient prediction models.This study explored the application of advancedmachine learning(ML)algorithms and Gene Expression Programming(GEP)techniques to predict CO_(2)-induced alterations in coal strength.Sixmodels were developed,including three metaheuristic-optimized XGBoost models(GWO-XGBoost,SSA-XGBoost,PO-XGBoost)and three GEP models(GEP-1,GEP-2,GEP-3).Comprehensive evaluations using multiple metrics revealed that all models demonstrated high predictive accuracy,with the SSA-XGBoost model achieving the best performance(R2—Coefficient of determination=0.99396,RMSE—Root Mean Square Error=0.62102,MAE—Mean Absolute Error=0.36164,MAPE—Mean Absolute Percentage Error=4.8101%,RPD—Residual Predictive Deviation=13.4741).Model interpretability analyses using SHAP(Shapley Additive exPlanations),ICE(Individual Conditional Expectation),and PDP(Partial Dependence Plot)techniques highlighted the dominant role of fixed carbon content(FC)and significant interactions between FC and CO_(2) saturation pressure(P).Theresults demonstrated that the proposedmodels effectively address the challenges of CO_(2)-induced strength prediction,providing valuable insights for geological storage safety and environmental applications.
文摘Assessing the stability of pillars in underground mines(especially in deep underground mines)is a critical concern during both the design and the operational phases of a project.This study mainly focuses on developing two practical models to predict pillar stability status.For this purpose,two robust models were developed using a database including 236 case histories from seven underground hard rock mines,based on gene expression programming(GEP)and decision tree-support vector machine(DT-SVM)hybrid algorithms.The performance of the developed models was evaluated based on four common statistical criteria(sensitivity,specificity,Matthews correlation coefficient,and accuracy),receiver operating characteristic(ROC)curve,and testing data sets.The results showed that the GEP and DT-SVM models performed exceptionally well in assessing pillar stability,showing a high level of accuracy.The DT-SVM model,in particular,outperformed the GEP model(accuracy of 0.914,sensitivity of 0.842,specificity of 0.929,Matthews correlation coefficient of 0.767,and area under the ROC of 0.897 for the test data set).Furthermore,upon comparing the developed models with the previous ones,it was revealed that both models can effectively determine the condition of pillar stability with low uncertainty and acceptable accuracy.This suggests that these models could serve as dependable tools for project managers,aiding in the evaluation of pillar stability during the design and operational phases of mining projects,despite the inherent challenges in this domain.
基金financially supported by the National Natural Science Foundation of China(32102559)the Jiangsu Shuang Chuang Tuan Dui Program,China(JSSCTD202147)the Jiangsu Shuang Chuang Ren Cai Program,China(JSSCRC2021541)。
文摘Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金financially supported by the National Natural Science Foundation of China,No.81303115,81774042 (both to XC)the Pearl River S&T Nova Program of Guangzhou,No.201806010025 (to XC)+3 种基金the Specialty Program of Guangdong Province Hospital of Chinese Medicine of China,No.YN2018ZD07 (to XC)the Natural Science Foundatior of Guangdong Province of China,No.2023A1515012174 (to JL)the Science and Technology Program of Guangzhou of China,No.20210201 0268 (to XC),20210201 0339 (to JS)Guangdong Provincial Key Laboratory of Research on Emergency in TCM,Nos.2018-75,2019-140 (to JS)
文摘Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
基金the Science and Technology Development Fund of Tianjin Education Commission for Higher Education,No.2020KJ133Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-009A.
文摘BACKGROUND Cyclin-dependent kinase 9(CDK9)expression and autophagy in colorectal cancer(CRC)tissues has not been widely studied.CDK9,a key regulator of transcription,may influence the occurrence and progression of CRC.The expression of auto-phagy-related genes BECN1 and drug resistance factor ABCG2 may also play a role in CRC.Under normal physiological conditions,autophagy can inhibit tumorigenesis,but once a tumor forms,autophagy may promote tumor growth.Therefore,understanding the relationship between autophagy and cancer,partic-ularly how autophagy promotes tumor growth after its formation,is a key motivation for this research.AIM To investigate the relationship between CDK9 expression and autophagy in CRC,assess differences in autophagy between left and right colon cancer,and analyze the associations of autophagy-related genes with clinical features and prognosis.METHODS We collected tumor tissues and paracarcinoma tissues from colon cancer patients with liver metastasis to observe the level of autophagy in tissues with high levels of CDK9 and low levels of CDK9.We also collected primary tissue from left and right colon cancer patients with liver metastasis to compare the autophagy levels and the expression of BECN1 and ABCG2 in the tumor and paracarcinoma tissues.RESULTS The incidence of autophagy and the expression of BECN1 and ABCG2 were different in left and right colon cancer,and autophagy might be involved in the occurrence of chemotherapy resistance.Further analysis of the rela-tionship between the expression of autophagy-related genes CDK9,ABCG2,and BECN1 and the clinical features and prognosis of colorectal cancer showed that the high expression of CDK9 indicated a poor prognosis in colorectal cancer.CONCLUSION This study laid the foundation for further research on the combination of CDK9 inhibitors and autophagy inhibitors in the treatment of patients with CRC.