期刊文献+
共找到407篇文章
< 1 2 21 >
每页显示 20 50 100
Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data 被引量:3
1
作者 WANG Fengfei TANG Shengjin +3 位作者 SUN Xiaoyan LI Liang YU Chuanqiang SI Xiaosheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期247-258,共12页
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n... Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction. 展开更多
关键词 remaining useful life(RUL)prediction imperfect prior information failure time data NONLINEAR random coefficient regression(RCR)model
在线阅读 下载PDF
TESTING OF CORRELATION AND HETEROSCEDASTICITY IN NONLINEAR REGRESSION MODELS WITH DBL(p,q,1) RANDOM ERRORS
2
作者 刘应安 韦博成 《Acta Mathematica Scientia》 SCIE CSCD 2008年第3期613-632,共20页
Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (K... Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (Kantz and Schreiber (1997)). Tsai (1986) introduced a composite test for autocorrelation and heteroscedasticity in linear models with AR(1) errors. Liu (2003) introduced a composite test for correlation and heteroscedasticity in nonlinear models with DBL(p, 0, 1) errors. Therefore, the important problems in regression model axe detections of bilinearity, correlation and heteroscedasticity. In this article, the authors discuss more general case of nonlinear models with DBL(p, q, 1) random errors by score test. Several statistics for the test of bilinearity, correlation, and heteroscedasticity are obtained, and expressed in simple matrix formulas. The results of regression models with linear errors are extended to those with bilinear errors. The simulation study is carried out to investigate the powers of the test statistics. All results of this article extend and develop results of Tsai (1986), Wei, et al (1995), and Liu, et al (2003). 展开更多
关键词 DBL(p Q 1) random errors nonlinear regression models score test HETEROSCEDASTICITY CORRELATION
在线阅读 下载PDF
Use of Random Regression Test-Day Model to Estimate Genetic Parameters of Milk Yield in Holstein Cows
3
作者 Yaser Fazel Masoud Asadi Fozi +4 位作者 Ali Esmailizadeh Fatemeh Fazel Ahmad Massoud Niazi Shahpoor Rahmati Mohammad Ibrahim Qasimi 《Open Journal of Animal Sciences》 2018年第1期27-38,共12页
(Co) variance components and genetic parameters were estimated for milk yield of Iranian Holstein cows. A total number of 68,945 milk test-day records of first, second and third lactations of 8515 animals from 100 sir... (Co) variance components and genetic parameters were estimated for milk yield of Iranian Holstein cows. A total number of 68,945 milk test-day records of first, second and third lactations of 8515 animals from 100 sires and 7743 dams originated from 34 herds collected during 2007 to 2009 by Iranian animal breeding center were used. The ASReml computer program was used to analyze the milk test-day records using the random regression procedure. Herd test date (HTD), milking times per day (milking frequency), number of lactations, year of birth, year of calving, age of animal at calving and days in milk (DIM) considered as fixed effects and additive genetic effects and animal permanent environmental effects were considered as the random effects. Additive genetic variance, animal permanent environment variance, residual variance, phenotypic variance, heritability and repeatability were estimated during different months of lactation between 5.7 - 19.6, 15.3 - 27.1, 31.4 - 17.2, 45.8 - 64.83, 0.1 - 0.32 and 0.4 - 0.6, respectively. Genetic correlation and phenotypic correlation were also estimated between months of lactation in range of -0.35 - 0.98 and 0.03 - 0.67, respectively. Genetic correlation and phenotypic correlation both showed the same changing pattern and they decreased as the interval between months of lactation increased. 展开更多
关键词 GENETIC Parameters random regression model Test-Day RECORDS MILK Yield HOLSTEIN COWS
在线阅读 下载PDF
Local Polynomial Regression Estimator of the Finite Population Total under Stratified Random Sampling: A Model-Based Approach
4
作者 Charles K. Syengo Sarah Pyeye +1 位作者 George O. Orwa Romanus O. Odhiambo 《Open Journal of Statistics》 2016年第6期1085-1097,共13页
In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by ... In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators. 展开更多
关键词 Sample Surveys Stratified random Sampling Auxiliary Information Local Polynomial regression model-Based Approach Nonparametric regression
在线阅读 下载PDF
Adaptive Random Effects/Coefficients Modeling
5
作者 George J. Knafl 《Open Journal of Statistics》 2024年第2期179-206,共28页
Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general... Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time. 展开更多
关键词 Adaptive regression Correlated Outcomes Extended Linear Mixed modeling Fractional Polynomials Likelihood Cross-Validation random Effects/Coefficients
在线阅读 下载PDF
Asymptotic Property for the Estimator of Nonparametric Regression Models Under Negatively Orthant Dependent Errors 被引量:1
6
作者 PENG Zhi-qing ZHENG Lu-lu LIU Yah-fang XIAO Ru WANG Xue-jun 《Chinese Quarterly Journal of Mathematics》 2015年第2期300-307,共8页
In this paper, by using some inequalities of negatively orthant dependent(NOD,in short) random variables and the truncated method of random variables, we investigate the nonparametric regression model. The complete co... In this paper, by using some inequalities of negatively orthant dependent(NOD,in short) random variables and the truncated method of random variables, we investigate the nonparametric regression model. The complete consistency result for the estimator of g(x) is presented. 展开更多
关键词 negatively orthant dependent random variables nonparametric regression model complete consistency
在线阅读 下载PDF
CBPS-Based Inference in Nonlinear Regression Models with Missing Data 被引量:1
7
作者 Donglin Guo Liugen Xue Haiqing Chen 《Open Journal of Statistics》 2016年第4期675-684,共11页
In this article, to improve the doubly robust estimator, the nonlinear regression models with missing responses are studied. Based on the covariate balancing propensity score (CBPS), estimators for the regression coef... In this article, to improve the doubly robust estimator, the nonlinear regression models with missing responses are studied. Based on the covariate balancing propensity score (CBPS), estimators for the regression coefficients and the population mean are obtained. It is proved that the proposed estimators are asymptotically normal. In simulation studies, the proposed estimators show improved performance relative to usual augmented inverse probability weighted estimators. 展开更多
关键词 Nonlinear regression model Missing at random Covariate Balancing Propensity Score GMM Augmented Inverse Probability Weighted
在线阅读 下载PDF
Parametric estimation for the simple linear regression model under moving extremes ranked set sampling design
8
作者 YAO Dong-sen CHEN Wang-xue LONG Chun-xian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第2期269-277,共9页
Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed... Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed by McIntyre[1952.A method for unbiased selective sampling,using ranked sets.Australian Journal of Agricultural Research 3,385-390]as an effective way to estimate the pasture mean.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling(MERSS)is considered for the best linear unbiased estimators(BLUEs)for the simple linear regression model.The BLUEs for this model under MERSS are derived.The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling. 展开更多
关键词 simple linear regression model best linear unbiased estimator simple random sampling ranked set sampling moving extremes ranked set sampling
在线阅读 下载PDF
Machine learning-based models for prediction of in-hospital mortality in patients with dengue shock syndrome
9
作者 Luan Thanh Vo Thien Vu +2 位作者 Thach Ngoc Pham Tung Huu Trinh Thanh Tat Nguyen 《World Journal of Methodology》 2025年第3期89-99,共11页
BACKGROUND Severe dengue children with critical complications have been attributed to high mortality rates,varying from approximately 1%to over 20%.To date,there is a lack of data on machine-learning-based algorithms ... BACKGROUND Severe dengue children with critical complications have been attributed to high mortality rates,varying from approximately 1%to over 20%.To date,there is a lack of data on machine-learning-based algorithms for predicting the risk of inhospital mortality in children with dengue shock syndrome(DSS).AIM To develop machine-learning models to estimate the risk of death in hospitalized children with DSS.METHODS This single-center retrospective study was conducted at tertiary Children’s Hospital No.2 in Viet Nam,between 2013 and 2022.The primary outcome was the in-hospital mortality rate in children with DSS admitted to the pediatric intensive care unit(PICU).Nine significant features were predetermined for further analysis using machine learning models.An oversampling method was used to enhance the model performance.Supervised models,including logistic regression,Naïve Bayes,Random Forest(RF),K-nearest neighbors,Decision Tree and Extreme Gradient Boosting(XGBoost),were employed to develop predictive models.The Shapley Additive Explanation was used to determine the degree of contribution of the features.RESULTS In total,1278 PICU-admitted children with complete data were included in the analysis.The median patient age was 8.1 years(interquartile range:5.4-10.7).Thirty-nine patients(3%)died.The RF and XGboost models demonstrated the highest performance.The Shapley Addictive Explanations model revealed that the most important predictive features included younger age,female patients,presence of underlying diseases,severe transaminitis,severe bleeding,low platelet counts requiring platelet transfusion,elevated levels of international normalized ratio,blood lactate and serum creatinine,large volume of resuscitation fluid and a high vasoactive inotropic score(>30).CONCLUSION We developed robust machine learning-based models to estimate the risk of death in hospitalized children with DSS.The study findings are applicable to the design of management schemes to enhance survival outcomes of patients with DSS. 展开更多
关键词 Dengue shock syndrome Dengue mortality Machine learning Supervised models Logistic regression random forest K-nearest neighbors Support vector machine Extreme Gradient Boost Shapley addictive explanations
在线阅读 下载PDF
Smoothed Empirical Likelihood Inference for Nonlinear Quantile Regression Models with Missing Response
10
作者 Honghua Dong Xiuli Wang 《Open Journal of Applied Sciences》 2023年第6期921-933,共13页
In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are o... In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are obtained and the confidence regions for the parameter can be constructed easily. 展开更多
关键词 Nonlinear model Quantile regression Smoothed Empirical Likelihood Missing at random
在线阅读 下载PDF
TESTING FOR VARYING DISPERSION OF LONGITUDINAL BINOMIAL DATA IN NONLINEAR LOGISTIC MODELS WITH RANDOM EFFECTS 被引量:2
11
作者 林金官 韦博成 《Acta Mathematica Scientia》 SCIE CSCD 2004年第4期559-568,共10页
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. O... In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)). 展开更多
关键词 Longitudinal binomial data logistic regression nonlinear models power calculation random effects score test varying dispersion
在线阅读 下载PDF
Comparative study of different machine learning models in landslide susceptibility assessment: A case study of Conghua District, Guangzhou, China 被引量:1
12
作者 Ao Zhang Xin-wen Zhao +8 位作者 Xing-yuezi Zhao Xiao-zhan Zheng Min Zeng Xuan Huang Pan Wu Tuo Jiang Shi-chang Wang Jun He Yi-yong Li 《China Geology》 CAS CSCD 2024年第1期104-115,共12页
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co... Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems. 展开更多
关键词 Landslides susceptibility assessment Machine learning Logistic regression random Forest Support Vector Machines XGBoost Assessment model Geological disaster investigation and prevention engineering
在线阅读 下载PDF
Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer
13
作者 Shengdong Cheng Juncheng Gao Hongning Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期871-892,共22页
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl... Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions. 展开更多
关键词 random forest regression model pile drivability Bayesian optimization particle swarm optimization
在线阅读 下载PDF
The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors
14
作者 Yun Bao YAO Yu Tan LÜ +2 位作者 Chao LU Wei WANG Xue Jun WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第5期1244-1272,共29页
In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to... In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to be estimated,random errorsε_(i)are(α,β)-mix_(i)ng random variables.The p-th(p>1)mean consistency,strong consistency and complete consistency for least squares estimators ofβ^(*)and g(·)are investigated under some mild conditions.In addition,a numerical simulation is carried out to study the finite sample performance of the theoretical results.Finally,a real data analysis is provided to further verify the effect of the model. 展开更多
关键词 β)-mixing random variables partial linear regression model least squares estimator CONSISTENCY
原文传递
基于机器学习的30%TBP/煤油-硝酸体系中主要组分的分配比预测研究
15
作者 于婷 张音音 +6 位作者 张睿志 金文蕾 罗应婷 朱升峰 何辉 叶国安 龚禾林 《原子能科学技术》 北大核心 2025年第1期14-23,共10页
为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型... 为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型,并基于不同数据集进行了超参数优化和模型训练。通过对模型进行验证和测试,发现采用随机森林算法建立的分配比模型准确度最高,其对铀预测的平均绝对相对误差达7.73%,较传统方法提高了约7%。与传统建模方法相比,机器学习方法建立模型的准确度更高。 展开更多
关键词 分配比数学模型 随机森林 支持向量回归 K近邻
在线阅读 下载PDF
ICU肠内营养患者误吸风险预测模型构建 被引量:1
16
作者 陈玥 张慧 +1 位作者 关纯 胡发升 《医学新知》 2025年第1期22-32,共11页
目的调查及筛选ICU肠内营养患者误吸危险因素并构建风险预测模型。方法回顾性收集2022年1月至2023年6月于青岛市市立医院重症医学科行肠内营养患者的资料,采用单因素分析、Lasso回归及多因素Logistic回归分析ICU肠内营养患者误吸发生的... 目的调查及筛选ICU肠内营养患者误吸危险因素并构建风险预测模型。方法回顾性收集2022年1月至2023年6月于青岛市市立医院重症医学科行肠内营养患者的资料,采用单因素分析、Lasso回归及多因素Logistic回归分析ICU肠内营养患者误吸发生的独立风险因素并构建预测模型,通过随机森林模型对影响因素重要性进行排序,使用列线图可视化预测模型。结果共纳入500例患者,285例患者发生误吸,ICU肠内营养患者误吸发生率为57.00%,独立风险因素重要性由高到低分别为置管天数[OR=1.038,95%CI(1.024,1.052)]、体位[OR=3.879,95%CI(2.104,7.152)]、每日肠内营养持续时间[OR=1.035,95%CI(1.004,1.067)]、APACHEⅡ评分[OR=1.063,95%CI(1.032,1.095)]、使用镇静镇痛药物[OR=4.054,95%CI(1.804,9.108)]、氧分压[OR=0.985,95%CI(0.974,0.997)]。模型训练集预测精确率为74.00%,特异度为69.48%,灵敏度为77.55%,AUC为0.82[95%CI(0.78,0.86)]。验证集预测精确率为70.00%,特异度为68.85%,灵敏度为70.79%,AUC为0.79[95%CI(0.72,0.86)]。校准曲线、决策曲线显示模型具有较好的校准度及获益性。结论本研究构建的ICU肠内营养患者误吸风险预测模型具有良好的预测效能,可以为临床医护人员预测误吸发生风险提供科学、客观的参考工具,便于针对性采取预防措施。 展开更多
关键词 肠内营养 误吸 重症监护病房 Lasso回归 随机森林 预测模型 列线图
在线阅读 下载PDF
妊娠高血压病人并发HELLP综合征风险预测模型的构建
17
作者 陈春榕 陈宁静 +3 位作者 杨宁 陈伟凤 高玉玲 吴碧瑜 《护理研究》 北大核心 2025年第4期540-545,共6页
目的:分析妊娠高血压病人并发HELLP综合征的影响因素,并构建妊娠高血压病人并发HELLP综合征的风险预测模型。方法:选取2020年2月—2023年8月在泉州市第一医院、福建医科大学附属第二医院以及泉州市妇幼保健院儿童医院治疗的470例妊娠高... 目的:分析妊娠高血压病人并发HELLP综合征的影响因素,并构建妊娠高血压病人并发HELLP综合征的风险预测模型。方法:选取2020年2月—2023年8月在泉州市第一医院、福建医科大学附属第二医院以及泉州市妇幼保健院儿童医院治疗的470例妊娠高血压病人为研究对象,收集研究对象的临床资料,采用多因素Logistic回归筛选影响妊娠高血压病人并发HELLP综合征的危险因素,运用R软件建立预测妊娠高血压病人并发HELLP综合征的随机森林模型。结果:470例妊娠高血压病人HELLP综合征发生率为9.57%。Logistic回归分析结果显示,年龄、发病孕周、文化程度、是否规律产检、血小板计数(PLT)、胎盘生长因子(PLGF)均是妊娠高血压病人并发HELLP综合征的独立危险因素(P<0.05)。随机森林模型预测妊娠高血压病人并发HELLP综合征的受试者工作特征曲线下面积(AUC)与Logistic回归模型的AUC值无明显差异。经过5折交叉验证,回归模型预测正确率为81.3%。结论:年龄、发病孕周、文化程度、规律产检、PLT、PLGF为妊娠高血压病人并发HELLP综合征的影响因素,基于上述因素构建的随机森林模型对妊娠高血压病人并发HELLP综合征具有较好的风险预测效能。 展开更多
关键词 妊娠高血压 HELLP综合征 LOGISTIC回归模型 随机森林模型 影响因素
在线阅读 下载PDF
基于多种机器学习模型的灵台县地质灾害易发性评估
18
作者 安亚鹏 汪霞 +4 位作者 张芮 刘兴荣 张国信 唐家凯 周自强 《兰州大学学报(自然科学版)》 北大核心 2025年第1期84-90,98,共8页
以灵台县为例,选取高程、坡度、坡向、地形起伏度、地层岩性、归一化植被指数、多年平均降雨量、河流缓冲区、土地利用和道路缓冲区10个因素作为地质灾害评价因子,利用逻辑回归(LR)、决策树(DT)和随机森林(RF)机器学习模型进行地质灾害... 以灵台县为例,选取高程、坡度、坡向、地形起伏度、地层岩性、归一化植被指数、多年平均降雨量、河流缓冲区、土地利用和道路缓冲区10个因素作为地质灾害评价因子,利用逻辑回归(LR)、决策树(DT)和随机森林(RF)机器学习模型进行地质灾害易发性评价,用受试者工作特征曲线进行模型预测精度评价.结果表明,RF模型的地质灾害极高易发区包含57.32%的地质灾害点,高于LR和DT模型的54.88%和48.78%;RF模型的地质灾害点密度为0.47处/km^(2),高于LR和DT模型,表明RF模型在预测成功率上高于LR和DT模型.RF模型评价结果的曲线下面积为0.883,优于LR和DT模型,其中极高易发区和高易发区面积占比分别为4.9%和13.8%. 展开更多
关键词 易发性评价 逻辑回归模型 决策树模型 随机森林模型 受试者工作特征曲线
在线阅读 下载PDF
基于耦合模型的九寨沟地震滑坡危险性对比研究
19
作者 郑志成 郭红梅 +1 位作者 赵真 张莹 《黑龙江科学》 2025年第2期7-15,共9页
以九寨沟地震极震区为研究区,基于4834处地震滑坡数据,选择坡度、坡向、起伏度、高程、发震断层距、震中距、地层岩性、河流距和道路距9个因子作为地震滑坡危险性评价因子,采用确定性系数-逻辑回归模型(CF-LR)、信息量-逻辑回归模型(I-... 以九寨沟地震极震区为研究区,基于4834处地震滑坡数据,选择坡度、坡向、起伏度、高程、发震断层距、震中距、地层岩性、河流距和道路距9个因子作为地震滑坡危险性评价因子,采用确定性系数-逻辑回归模型(CF-LR)、信息量-逻辑回归模型(I-LR)、确定性系数-随机森林模型(CF-RF)和信息量-随机森林模型(I-RF)4种耦合模型开展地震滑坡危险性评价,利用频率比和接受者操作特性曲线(ROC)对4种耦合模型精度进行对比分析。结果表明,4种耦合模型的地震滑坡危险性等级频率比值随着滑坡危险性等级的提高而明显增大,极高危险性和高危险区频率比占总频率比均超过85%,CF-LR模型、I-LR模型、CF-RF模型和I-RF模型的AUC值分别为0.877、0.879、0.903和0.905,表明4种组合模型均能准确地评价九寨沟地震滑坡危险性。将CF模型或I模型分别与LR模型及RF模型耦合,RF耦合模型比LR耦合模型精度提高了2.6%,表明RF模型在解决非线性关系的问题上更具优势,这一成果可为该地区灾害风险评价和防灾减灾规划提供参考。 展开更多
关键词 滑坡危险性 逻辑回归模型 随机森林模型 耦合模型 九寨沟地震
在线阅读 下载PDF
防辐射罩区域自动气象站气温观测偏差分析及其订正方法
20
作者 王星宇 严婧 +2 位作者 刘莹 刘园园 孙越 《暴雨灾害》 2025年第1期112-122,共11页
分析防辐射罩区域自动气象站气温值偏差变化特征,有助于自动站气温资料质量的订正,进而提高自动站气温资料的可用性。因此,基于2019年6月—2022年5月湖北省防辐射罩区域自动气象站及与其邻近的百叶箱站观测的逐小时气温资料,首先分析两... 分析防辐射罩区域自动气象站气温值偏差变化特征,有助于自动站气温资料质量的订正,进而提高自动站气温资料的可用性。因此,基于2019年6月—2022年5月湖北省防辐射罩区域自动气象站及与其邻近的百叶箱站观测的逐小时气温资料,首先分析两类站点间小时气温偏差(T_(bs))的季节变化和日变化特征,并探讨降水、相对湿度、日照、风速等气象要素对T_(bs)的影响;然后,基于多元线性回归和随机森林方法,分别建立两种防辐射罩站观测气温订正模型,评估两种模型对防辐射罩站气温观测偏差的订正效果。结果表明:(1)总体上,白天时段防辐射罩站小时观测气温较其邻近百叶箱站加权平均小时观测气温要高,防辐射罩站年均高温日数较其邻近百叶箱站偏高20.0 d;(2)T_(bs)存在明显季节变化和日变化特征,总体呈现夏季高、冬季低且日间高、夜间和清晨低的特点,平均T_(bs)在晴天13:00(北京时,下同)最高,可达到1.0℃以上;(3)T_(bs)会随站点气象条件的变化而变化,在无降水现象时较大,而有降水时接近0℃;T_(bs)与相对湿度负相关,而与日照时数正相关,与风速则是先呈现正相关,随着风速增大至临界值以后呈现负相关;(4)多元线性回归和随机森林模型对防辐射罩站气温观测偏差均有较好的订正效果,使平均T_(bs)由0.72℃分别降至0.17℃和0.16℃。随机森林模型的订正效果总体优于多元线性回归模型,且对超过35℃的高温订正效果更佳,订正后防辐射罩站总高温日数下降比例超过55%。 展开更多
关键词 区域自动气象站 防辐射罩 气温观测偏差订正 多元线性回归模型 随机森林模型
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部