To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectr...To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.展开更多
The attitude optimal control problem (OCP) of a two-rigid-body space- craft with two rigid bodies coupled by a ball-in-socket joint is considered. Based on conservation of angular momentum of the system without the ...The attitude optimal control problem (OCP) of a two-rigid-body space- craft with two rigid bodies coupled by a ball-in-socket joint is considered. Based on conservation of angular momentum of the system without the external torque, a dynamic equation of three-dimensional attitude motion of the system is formulated. The attitude motion planning problem of the coupled-rigid-body spacecraft can be converted to a dis- crete nonlinear programming (NLP) problem using the Chebyshev-Gauss pseudospectral method (CGPM). Solutions of the NLP problem can be obtained using the sequential quadratic programming (SQP) algorithm. Since the collocation points of the CGPM are Chebyshev-Gauss (CG) points, the integration of cost function can be approximated by the Clenshaw-Curtis quadrature, and the corresponding quadrature weights can be calculated efficiently using the fast Fourier transform (FFT). To improve computational efficiency and numerical stability, the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of state and con- trol variables. Furthermore, numerical float errors of the state differential matrix and barycentric weights can be alleviated using trigonometric identity especially when the number of CG points is large. A simple yet efficient method is used to avoid sensitivity to the initial values for the SQP algorithm using a layered optimization strategy from a feasible solution to an optimal solution. Effectiveness of the proposed algorithm is perfect for attitude motion planning of a two-rigid-body spacecraft coupled by a ball-in-socket joint through numerical simulation.展开更多
A generalized Gauss-type quadrature formula is introduced, which assists in selection of collocation points in pseudospectral method for differential equations with two-point derivative boundary conditions. Some resul...A generalized Gauss-type quadrature formula is introduced, which assists in selection of collocation points in pseudospectral method for differential equations with two-point derivative boundary conditions. Some results on the related Jacobi interpolation are established. A pseudospectral scheme is proposed for the Kuramoto-Sivashisky equation. A skew symmetric decomposition is used for dealing with the nonlinear convection term. The stability and convergence of the proposed scheme are proved. The error estimates are obtained. Numerical results show the efficiency of this approach.展开更多
This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optim...This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optimal control problem with unspecified terminal time is formulated.Secondly,the control and terminal time update formulas are derived analytically.In contrast to previous work,the derivation process fully considers the Hamiltonian function corresponding to the unspecified terminal time,which is coupled with control,state,and costate.On the assumption of small perturbation,a special algebraic equation is provided to represent the equivalent optimal condition for the terminal time.Also,using Gauss pseudospectral collocation,error propagation dynamical equations involving the first-order correction term of the terminal time are transformed into a set of algebraic equations.Furthermore,analytical modification formulas can be derived by associating those equations and optimal conditions to eliminate terminal error and approach nonlinear optimal control.Even with their mathematical complexity,these formulas produce more accurate control and terminal time corrections and remove reliance on task-related parameters.Finally,several numerical simulations,comparisons with typical methods,and Monte Carlo simulations have been done to verify its optimality,high convergence rate,great stability and robustness.展开更多
An advanced Gauss pseudospectral method(AGPM) was proposed to estimate the parameters of the continuous-time(CT)Hammerstein model.The nonlinear part of the Hammerstein system is approximated with pseudospectral approx...An advanced Gauss pseudospectral method(AGPM) was proposed to estimate the parameters of the continuous-time(CT)Hammerstein model.The nonlinear part of the Hammerstein system is approximated with pseudospectral approximation method.The linear part was written as a controllable canonical form to circumvent the high order time-derivative of the input and output(I/O) signals,which could multiply the measurement noise in the identification procession.Furthermore,an output error minimization was constructed for the CT Hammerstein model identification,which was then transcribed into a nonlinear programming(NLP) problem by AGPM.AGPM could converge to the true values of the CT Hammerstein model with few interpolated Legendre-Gauss(LG) nodes.Lastly,two illustrative examples were proposed to verify the accuracy and efficiency of the method.展开更多
基金Supported by Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ8366)Fundamental Research Foundation of Northwestern Polytechnical University(JC20120210,JC20110238)Aeronautical Science Foundation of China(20120853007)
基金supported by the National Basic Research Program of China(973 Program)(2012CB720003)the National Natural Science Foundation of China(10772011)
文摘To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.
基金supported by the National Natural Science Foundation of China(No.11472058)
文摘The attitude optimal control problem (OCP) of a two-rigid-body space- craft with two rigid bodies coupled by a ball-in-socket joint is considered. Based on conservation of angular momentum of the system without the external torque, a dynamic equation of three-dimensional attitude motion of the system is formulated. The attitude motion planning problem of the coupled-rigid-body spacecraft can be converted to a dis- crete nonlinear programming (NLP) problem using the Chebyshev-Gauss pseudospectral method (CGPM). Solutions of the NLP problem can be obtained using the sequential quadratic programming (SQP) algorithm. Since the collocation points of the CGPM are Chebyshev-Gauss (CG) points, the integration of cost function can be approximated by the Clenshaw-Curtis quadrature, and the corresponding quadrature weights can be calculated efficiently using the fast Fourier transform (FFT). To improve computational efficiency and numerical stability, the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of state and con- trol variables. Furthermore, numerical float errors of the state differential matrix and barycentric weights can be alleviated using trigonometric identity especially when the number of CG points is large. A simple yet efficient method is used to avoid sensitivity to the initial values for the SQP algorithm using a layered optimization strategy from a feasible solution to an optimal solution. Effectiveness of the proposed algorithm is perfect for attitude motion planning of a two-rigid-body spacecraft coupled by a ball-in-socket joint through numerical simulation.
文摘A generalized Gauss-type quadrature formula is introduced, which assists in selection of collocation points in pseudospectral method for differential equations with two-point derivative boundary conditions. Some results on the related Jacobi interpolation are established. A pseudospectral scheme is proposed for the Kuramoto-Sivashisky equation. A skew symmetric decomposition is used for dealing with the nonlinear convection term. The stability and convergence of the proposed scheme are proved. The error estimates are obtained. Numerical results show the efficiency of this approach.
基金supported by the National Natural Science Foundation of China(No.62003019)the Young Talents Support Program of Beihang University,China(No.YWF-21-BJ-J-1180).
文摘This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optimal control problem with unspecified terminal time is formulated.Secondly,the control and terminal time update formulas are derived analytically.In contrast to previous work,the derivation process fully considers the Hamiltonian function corresponding to the unspecified terminal time,which is coupled with control,state,and costate.On the assumption of small perturbation,a special algebraic equation is provided to represent the equivalent optimal condition for the terminal time.Also,using Gauss pseudospectral collocation,error propagation dynamical equations involving the first-order correction term of the terminal time are transformed into a set of algebraic equations.Furthermore,analytical modification formulas can be derived by associating those equations and optimal conditions to eliminate terminal error and approach nonlinear optimal control.Even with their mathematical complexity,these formulas produce more accurate control and terminal time corrections and remove reliance on task-related parameters.Finally,several numerical simulations,comparisons with typical methods,and Monte Carlo simulations have been done to verify its optimality,high convergence rate,great stability and robustness.
文摘An advanced Gauss pseudospectral method(AGPM) was proposed to estimate the parameters of the continuous-time(CT)Hammerstein model.The nonlinear part of the Hammerstein system is approximated with pseudospectral approximation method.The linear part was written as a controllable canonical form to circumvent the high order time-derivative of the input and output(I/O) signals,which could multiply the measurement noise in the identification procession.Furthermore,an output error minimization was constructed for the CT Hammerstein model identification,which was then transcribed into a nonlinear programming(NLP) problem by AGPM.AGPM could converge to the true values of the CT Hammerstein model with few interpolated Legendre-Gauss(LG) nodes.Lastly,two illustrative examples were proposed to verify the accuracy and efficiency of the method.