期刊文献+
共找到107,355篇文章
< 1 2 250 >
每页显示 20 50 100
A novel method for clustering cellular data to improve classification
1
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
2
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
Multi-Step Clustering of Smart Meters Time Series:Application to Demand Flexibility Characterization of SME Customers
3
作者 Santiago Bañales Raquel Dormido Natividad Duro 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期869-907,共39页
Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the... Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions. 展开更多
关键词 Electric load clustering load profiling smart meters machine learning data mining demand flexibility demand response
在线阅读 下载PDF
Domain Delineation Using Geological Data, Variogram Analysis, and Clustering Algorithms
4
作者 Farzaneh Khorram Amin Hossein Morshedy 《Journal of Geoscience and Environment Protection》 2025年第1期31-47,共17页
Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study i... Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study investigates the application of hard and fuzzy clustering algorithms for domain delineation, using geological and geochemical data from two exploration campaigns at the eastern Kahang deposit in central Iran. The dataset includes geological layers (lithology, alteration, and mineral zones), geochemical layers (Cu, Mo, Ag, and Au grades), and borehole coordinates. Six clustering algorithms—K-means, hierarchical, affinity propagation, self-organizing map (SOM), fuzzy C-means, and Gustafson-Kessel—were applied to determine the optimal number of clusters, which ranged from 3 to 4. The fuzziness and weighting parameters were found to range from 1.1 to 1.3 and 0.1 to 0.3, respectively, based on the evaluation of various hard and fuzzy cluster validity indices. Directional variograms were computed to assess spatial anisotropy, and the anisotropy ellipsoid for each domain was defined to identify the model with the highest level of anisotropic discrimination among the domains. The SOM algorithm, which incorporated both qualitative and quantitative data, produced the best model, resulting in the identification of three distinct domains. These findings underscore the effectiveness of combining clustering techniques with variogram analysis for accurate domain delineation in geostatistical modeling. 展开更多
关键词 Domaining Hard and Fuzzy clustering Spatial Anisotropy Kahang Deposit
在线阅读 下载PDF
Multi-Order Neighborhood Fusion Based Multi-View Deep Subspace Clustering
5
作者 Kai Zhou Yanan Bai +1 位作者 Yongli Hu Boyue Wang 《Computers, Materials & Continua》 2025年第3期3873-3890,共18页
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s... Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024). 展开更多
关键词 Multi-view subspace clustering subspace clustering deep clustering multi-order graph structure
在线阅读 下载PDF
Characterization and clustering of rock discontinuity sets:A review
6
作者 Changle Pu Jiewei Zhan +1 位作者 Wen Zhang Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1240-1262,共23页
The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has under... The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has undergone rapid and remarkable development.However,there is no relevant literature summarizing these achievements,and this paper attempts to elaborate on the current status and prospects in this field.Specifically,this review aims to discuss the development process of clustering methods for discontinuity sets and the state-of-the-art relevant algorithms.First,we introduce the importance of discontinuity clustering analysis and follow the comprehensive characterization approaches of discontinuity data.A bibliometric analysis is subsequently conducted to clarify the current status and development characteristics of the clustering of discontinuity sets.The methods for the clustering analysis of rock discontinuities are reviewed in terms of single-and multi-parameter clustering methods.Single-parameter methods can be classified into empirical judgment methods,dynamic clustering methods,relative static clustering methods,and static clustering methods,reflecting the continuous optimization and improvement of clustering algorithms.Moreover,this paper compares the current mainstream of single-parameter clustering methods with multi-parameter clustering methods.It is emphasized that the current single-parameter clustering methods have reached their performance limits,with little room for improvement,and that there is a need to extend the study of multi-parameter clustering methods.Finally,several suggestions are offered for future research on the clustering of discontinuity sets. 展开更多
关键词 Discontinuity clustering clustering algorithms Discontinuity characterization Orientation analysis Rock mass
在线阅读 下载PDF
Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells
7
作者 Chuanyun Xu Die Hu +3 位作者 Yang Zhang Shuaiye Huang Yisha Sun Gang Li 《Computers, Materials & Continua》 2025年第4期559-574,共16页
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an... Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening. 展开更多
关键词 Cervical abnormal cells image detection multi-scale feature fusion contextual information
在线阅读 下载PDF
Fake News Detection Based on Cross-Modal Ambiguity Computation and Multi-Scale Feature Fusion
8
作者 Jianxiang Cao Jinyang Wu +5 位作者 Wenqian Shang Chunhua Wang Kang Song Tong Yi Jiajun Cai Haibin Zhu 《Computers, Materials & Continua》 2025年第5期2659-2675,共17页
With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of... With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of multimodal approaches for fake news detection has gained significant attention.To solve the problems existing in previous multi-modal fake news detection algorithms,such as insufficient feature extraction and insufficient use of semantic relations between modes,this paper proposes the MFFFND-Co(Multimodal Feature Fusion Fake News Detection with Co-Attention Block)model.First,the model deeply explores the textual content,image content,and frequency domain features.Then,it employs a Co-Attention mechanism for cross-modal fusion.Additionally,a semantic consistency detectionmodule is designed to quantify semantic deviations,thereby enhancing the performance of fake news detection.Experimentally verified on two commonly used datasets,Twitter and Weibo,the model achieved F1 scores of 90.0% and 94.0%,respectively,significantly outperforming the pre-modified MFFFND(Multimodal Feature Fusion Fake News Detection with Attention Block)model and surpassing other baseline models.This improves the accuracy of detecting fake information in artificial intelligence detection and engineering software detection. 展开更多
关键词 Fake news detection MULTIMODAL cross-modal ambiguity computation multi-scale feature fusion
在线阅读 下载PDF
A review on multi-scale structure engineering of carbon-based electrode materials towards dense energy storage for supercapacitors
9
作者 Dongyang Wu Fei Sun +5 位作者 Min Xie Hua Wang Wei Fan Jihui Gao Guangbo Zhao Shaoqin Liu 《Journal of Energy Chemistry》 2025年第3期768-799,共32页
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect... Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials. 展开更多
关键词 SUPERCAPACITORS Carbon-based electrodes Volumetric performances multi-scale structure Dense energy storage
在线阅读 下载PDF
MA-VoxelMorph:Multi-scale attention-based VoxelMorph for nonrigid registration of thoracoabdominal CT images
10
作者 Qing Huang Lei Ren +3 位作者 Tingwei Quan Minglei Yang Hongmei Yuan Kai Cao 《Journal of Innovative Optical Health Sciences》 2025年第1期135-151,共17页
This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualiz... This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualization enhancement.However,fine structure registration of complex thoracoabdominal organs and large deformation registration caused by respiratory motion is challenging.To deal with this problem,we propose a 3D multi-scale attention VoxelMorph(MAVoxelMorph)registration network.To alleviate the large deformation problem,a multi-scale axial attention mechanism is utilized by using a residual dilated pyramid pooling for multi-scale feature extraction,and position-aware axial attention for long-distance dependencies between pixels capture.To further improve the large deformation and fine structure registration results,a multi-scale context channel attention mechanism is employed utilizing content information via adjacent encoding layers.Our method was evaluated on four public lung datasets(DIR-Lab dataset,Creatis dataset,Learn2Reg dataset,OASIS dataset)and a local dataset.Results proved that the proposed method achieved better registration performance than current state-of-the-art methods,especially in handling the registration of large deformations and fine structures.It also proved to be fast in 3D image registration,using about 1.5 s,and faster than most methods.Qualitative and quantitative assessments proved that the proposed MA-VoxelMorph has the potential to realize precise and fast tumor localization in clinical interventional surgeries. 展开更多
关键词 Thoracoabdominal CT image registration large deformation fine structure multi-scale attention mechanism
在线阅读 下载PDF
MSFResNet:A ResNeXt50 model based on multi-scale feature fusion for wild mushroom identification
11
作者 YANG Yang JU Tao +1 位作者 YANG Wenjie ZHAO Yuyang 《Journal of Measurement Science and Instrumentation》 2025年第1期66-74,共9页
To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network mo... To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification. 展开更多
关键词 multi-scale feature fusion attention mechanism ResNeXt50 wild mushroom identification deep learning
在线阅读 下载PDF
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
12
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
FedCPS:A Dual Optimization Model for Federated Learning Based on Clustering and Personalization Strategy
13
作者 Zhen Yang Yifan Liu +2 位作者 Fan Feng Yi Liu Zhenpeng Liu 《Computers, Materials & Continua》 2025年第4期357-380,共24页
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a... Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments. 展开更多
关键词 Federated learning cluster PERSONALIZATION OVERFITTING
在线阅读 下载PDF
Multi-Scale Vision Transformer with Dynamic Multi-Loss Function for Medical Image Retrieval and Classification
14
作者 Omar Alqahtani Mohamed Ghouse +2 位作者 Asfia Sabahath Omer Bin Hussain Arshiya Begum 《Computers, Materials & Continua》 2025年第5期2221-2244,共24页
This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi... This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison. 展开更多
关键词 Medical image retrieval vision transformer multi-scale encoding multi-loss function ISIC-2018 ChestX-ray14
在线阅读 下载PDF
AMSFuse:Adaptive Multi-Scale Feature Fusion Network for Diabetic Retinopathy Classification
15
作者 Chengzhang Zhu Ahmed Alasri +5 位作者 Tao Xu Yalong Xiao Abdulrahman Noman Raeed Alsabri Xuanchu Duan Monir Abdullah 《Computers, Materials & Continua》 2025年第3期5153-5167,共15页
Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure p... Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment.Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment.However,traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level.On the other hand,models that focus on global semantic-level information might overlook critical,subtle local pathological features.To address this issue,we propose an adaptive multi-scale feature fusion network called(AMSFuse),which can adaptively combine multi-scale global and local features without compromising their individual representation.Specifically,our model incorporates global features for extracting high-level contextual information from retinal images.Concurrently,local features capture fine-grained details,such as microaneurysms,hemorrhages,and exudates,which are critical for DR diagnosis.These global and local features are adaptively fused using a fusion block,followed by an Integrated Attention Mechanism(IAM)that refines the fused features by emphasizing relevant regions,thereby enhancing classification accuracy for DR classification.Our model achieves 86.3%accuracy on the APTOS dataset and 96.6%RFMiD,both of which are comparable to state-of-the-art methods. 展开更多
关键词 Diabetic retinopathy multi-scale feature fusion global features local features integrated attention mechanism retinal images
在线阅读 下载PDF
Effects of silica fume on the multi-scale material properties of composite Portland cement-based cutoff wall backfill
16
作者 ZHOU Tan HU Jian-hua +2 位作者 ZHAO Feng-wen GUO Meng-meng XUE Sheng-guo 《Journal of Central South University》 2025年第1期205-219,共15页
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof... Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications. 展开更多
关键词 silica fume SSCB cutoff wall multi-scale material properties engineering properties microscopic mechanism
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
17
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 cluster Heads(CHs) Golden Jackal Optimization Algorithm(GJOA) Improved Whale Optimization Algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Ordered Clustering-Based Semantic Music Recommender System Using Deep Learning Selection
18
作者 Weitao Ha Sheng Gang +2 位作者 Yahya D.Navaei Abubakar S.Gezawa Yaser A.Nanehkaran 《Computers, Materials & Continua》 2025年第5期3025-3057,共33页
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users... Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%. 展开更多
关键词 Music recommender system order clustering deep learning
在线阅读 下载PDF
Fuzzy Decision-Based Clustering for Efficient Data Aggregation in Mobile UWSNs
19
作者 Aadil Mushtaq Pandith Manni Kumar +5 位作者 Naveen Kumar Nitin Goyal Sachin Ahuja Yonis Gulzar Rashi Rastogi Rupesh Gupta 《Computers, Materials & Continua》 2025年第4期259-279,共21页
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregatio... Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater environments.Additionally,conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink,commonly known as the energy hole issue.Moreover,cluster-based aggregation methods face significant challenges such as cluster head(CH)failures and collisions within clusters that degrade overall network performance.To address these limitations,this paper introduces an innovative framework,the Cluster-based Data Aggregation using Fuzzy Decision Model(CDAFDM),tailored for mobile UWSNs.The proposed method has four main phases:clustering,CH selection,data aggregation,and re-clustering.During CH selection,a fuzzy decision model is utilized to ensure efficient cluster head selection based on parameters such as residual energy,distance to the sink,and data delivery likelihood,enhancing network stability and energy efficiency.In the aggregation phase,CHs transmit a single,consolidated set of non-redundant data to the base station(BS),thereby reducing data duplication and saving energy.To adapt to the changing network topology,the re-clustering phase periodically updates cluster formations and reselects CHs.Simulation results show that CDAFDM outperforms current protocols such as CAPTAIN(Collection Algorithm for underwater oPTical-AcoustIc sensor Networks),EDDG(Event-Driven Data Gathering),and DCBMEC(Data Collection Based on Mobile Edge Computing)with a packet delivery ratio increase of up to 4%,an energy consumption reduction of 18%,and a data collection latency reduction of 52%.These findings highlight the framework’s potential for reliable and energy-efficient data aggregation mobile UWSNs. 展开更多
关键词 clustering data aggregation data collection fuzzy model MONITORING UWSN
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
20
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部