期刊文献+
共找到343,987篇文章
< 1 2 250 >
每页显示 20 50 100
APPLICATION OF MULTI-SENSOR DATA FUSION BASED ON FUZZY NEURAL NETWORK IN ROTA TING MECHANICAL FAILURE DIAGNOSIS 被引量:1
1
作者 周洁敏 林刚 +1 位作者 宫淑丽 陶云刚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期91-96,共6页
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se... At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter. 展开更多
关键词 multi-sensor data fus ion fuzzy neural network rotating mechanical fault diagnosis grade of members hip
在线阅读 下载PDF
Inversion of Evaporation and Water Vapor Transport Using HY-2 Multi-Sensor Data
2
作者 LIU Dong’ang SUN Jian GUAN Changlong 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第1期13-22,共10页
HY-2 satellite is the first marine dynamic environment satellite of China.In this study,global evaporation and water vapor transport of the global sea surface are calculated on the basis of HY-2 multi-sensor data from... HY-2 satellite is the first marine dynamic environment satellite of China.In this study,global evaporation and water vapor transport of the global sea surface are calculated on the basis of HY-2 multi-sensor data from April 1 to 30,2014.The algorithm of evaporation and water vapor transport is discussed in detail,and results are compared with other reanalysis data.The sea surface temperature of HY-2 is in good agreement with the ARGO buoy data.Two clusters are shown in the scatter plot of HY-2 and OAFlux evaporation due to the uneven global distribution of evaporation.To improve the calculation accuracy,we compared the different parameterization schemes and adopted the method of calibrating HY-2 precipitation data by SSM/I and Global Precipitation Climatology Project(GPCP)data.In calculating the water vapor transport,the adjustment scheme is proposed to match the balance of the water cycle for data in the low latitudes. 展开更多
关键词 HY-2 multi-sensor data INVERSION EVAPORATION water vapor transport data calibration
在线阅读 下载PDF
A Study of Multi-sensor Data Fusion System Based on MAS for Nutrient Solution Measurement
3
作者 Feng Chen Dafu Yang +1 位作者 Bing Wang Xianhu Tan 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期264-267,共4页
For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system ... For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system under greenhouse environment,sensors should have intelligent properties including self-calibration and self-compensation. Meanwhile,it is necessary for multiple sensors to cooperate and interact for enhancing reliability of multi-sensor system. Because of the properties of multi-agent system (MAS),it is an appropriate tool to study MSDF system.This paper proposed an architecture of MSDF system based on MAS for the multiple components measurement of nutrient solution.The sensor agent's structure and function modules are analyzed and described in detail,the formal definitions are given,too.The relations of the sensors are modeled to implement reliability diagnosis of the multi-sensor system,so that the reliability of nutrient control system is enhanced.This study offers an effective approach for the study of MSDF. 展开更多
关键词 multi-sensor data fusion multi-agent system nutrient solution reliability diagnosis.
在线阅读 下载PDF
Multi-sensor Data Fusion by Improved Hough Transformation
4
作者 张鸿宾 《High Technology Letters》 EI CAS 1995年第2期7-11,共5页
In this paper we present an evidence-gathering approach to slove the multi-sensor data fusion problem. It uses an improved Hough transformation method rather than the usual statistical or geometric approach to extract... In this paper we present an evidence-gathering approach to slove the multi-sensor data fusion problem. It uses an improved Hough transformation method rather than the usual statistical or geometric approach to extract the directions and positions of the walls in a room and update the location (orientation and position)of a mobile robot. The simulation results show that the proposed method is of practical importance since it is very simple and easy to implement. 展开更多
关键词 multi-sensor data fusion Hough transformation Mobile robot
在线阅读 下载PDF
Weighted Multi-sensor Data Level Fusion Method of Vibration Signal Based on Correlation Function 被引量:7
5
作者 BIN Guangfu JIANG Zhinong +1 位作者 LI Xuejun DHILLON B S 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期899-904,共6页
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery... As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement. 展开更多
关键词 vibration signal multi-sensor data level fusion correlation function weighted value
在线阅读 下载PDF
STUDY ON THE COAL-ROCK INTERFACE RECOGNITION METHOD BASED ON MULTI-SENSOR DATA FUSION TECHNIQUE 被引量:7
6
作者 Ren FangYang ZhaojianXiong ShiboResearch Institute of Mechano-Electronic Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期321-324,共4页
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data... The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones. 展开更多
关键词 Coal-rock interface recognition (CIR) data fusion (DF) multi-sensor
在线阅读 下载PDF
A Novel Multi-sensor Data Fusion Algorithm and Its Application to Diagnostics 被引量:2
7
作者 Li Xiong Xu Zongchang Dong Zhiming 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期788-790,共3页
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila... To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis. 展开更多
关键词 DIAGNOSTICS multi-sensor data FUSION ALGORITHM ENGINE
在线阅读 下载PDF
Multi-Sensor Data Fusion Technologies for Blanket Jamming Localization 被引量:1
8
作者 王菊 吴嗣亮 曾涛 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期22-26,共5页
The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket ... The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket jamming. Netted radars could get position information of the blanket jamming by make use of radars' relative position and the angle information, when there is one blanket jamming. In the presence of error, the localization method and the accuracy analysis of one blanket jamming are given. However, if there are more than one blanket jamming, and the two blanket jamming and two radars are coplanar, the localization of jamming could be error due to localization ambiguity. To solve this confusion, the Kalman filter model is established for all intersections, and through the initiation and association algorithm of multi-target, the false intersection can be eliminated. Simulations show that the presented method is valid. 展开更多
关键词 data fusion blanket jamming LOCALIZATION Kalman filter
在线阅读 下载PDF
A New Multi-sensor Data Fusion Algorithm Based on EMD-MMSE 被引量:2
9
作者 张琦 阙沛文 +1 位作者 陈天璐 黄晶 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期153-158,共6页
A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean squ... A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean square error(MMSE)estimator is used to calculate the weights of the corresponding series.Finally,the fused signal is the weighted addition of all these series.The experiments in lab testified the efficiency of this method.In addition,the comparison in fusion time and fusion results with existing fusion method based on wavelet and average technique shows the advantage of this method greatly. 展开更多
关键词 data fusion empirical mode decomposition (EMD) minimum mean square error (MMSE) multisensor system
在线阅读 下载PDF
Autonomous Parking-Lots Detection with Multi-Sensor Data Fusion Using Machine Deep Learning Techniques 被引量:1
10
作者 Kashif Iqbal Sagheer Abbas +4 位作者 Muhammad Adnan Khan Atifa Ather Muhammad Saleem Khan Areej Fatima Gulzar Ahmad 《Computers, Materials & Continua》 SCIE EI 2021年第2期1595-1612,共18页
The rapid development and progress in deep machine-learning techniques have become a key factor in solving the future challenges of humanity.Vision-based target detection and object classification have been improved d... The rapid development and progress in deep machine-learning techniques have become a key factor in solving the future challenges of humanity.Vision-based target detection and object classification have been improved due to the development of deep learning algorithms.Data fusion in autonomous driving is a fact and a prerequisite task of data preprocessing from multi-sensors that provide a precise,well-engineered,and complete detection of objects,scene or events.The target of the current study is to develop an in-vehicle information system to prevent or at least mitigate traffic issues related to parking detection and traffic congestion detection.In this study we examined to solve these problems described by(1)extracting region-of-interest in the images(2)vehicle detection based on instance segmentation,and(3)building deep learning model based on the key features obtained from input parking images.We build a deep machine learning algorithm that enables collecting real video-camera feeds from vision sensors and predicting free parking spaces.Image augmentation techniques were performed using edge detection,cropping,refined by rotating,thresholding,resizing,or color augment to predict the region of bounding boxes.A deep convolutional neural network F-MTCNN model is proposed that simultaneously capable for compiling,training,validating and testing on parking video frames through video-camera.The results of proposed model employing on publicly available PK-Lot parking dataset and the optimized model achieved a relatively higher accuracy 97.6%than previous reported methodologies.Moreover,this article presents mathematical and simulation results using state-of-the-art deep learning technologies for smart parking space detection.The results are verified using Python,TensorFlow,OpenCV computer simulation frameworks. 展开更多
关键词 Smart parking-lot detection deep convolutional neural network data augmentation REGION-OF-INTEREST object detection
在线阅读 下载PDF
Multi-sensor data merging of sea ice concentration and thickness
11
作者 Keguang WANG Thomas LAVERGNE Frode DINESSEN 《Advances in Polar Science》 CSCD 2020年第1期1-13,共13页
With the rapid change in the Arctic sea ice,a large number of sea ice observations have been collected in recent years,and it is expected that an even larger number of such observations will emerge in the coming years... With the rapid change in the Arctic sea ice,a large number of sea ice observations have been collected in recent years,and it is expected that an even larger number of such observations will emerge in the coming years.To make the best use of these observations,in this paper we develop a multi-sensor optimal data merging(MODM)method to merge any number of different sea ice observations.Since such merged data are independent on model forecast,they are valid for model initialization and model validation.Based on the maximum likelihood estimation theory,we prove that any model assimilated with the merged data is equivalent to assimilating the original multi-sensor data.This greatly facilitates sea ice data assimilation,particularly for operational forecast with limited computational resources.We apply the MODM method to merge sea ice concentration(SIC)and sea ice thickness(SIT),respectively,in the Arctic.For SIC merging,the Special Sensor Microwave Imager/Sounder(SSMIS)and Advanced Microwave Scanning Radiometer 2(AMSR2)data are merged together with the Norwegian Ice Service ice chart.This substantially reduces the uncertainties at the ice edge and in the coastal areas.For SIT merging,the daily Soil Moisture and Ocean Salinity(SMOS)data is merged with the weekly-mean merged CryoSat-2 and SMOS(CS2SMOS)data.This generates a new daily CS2SMOS SIT data with better spatial coverage for the whole Arctic. 展开更多
关键词 SEA ICE CONCENTRATION SEA ICE thickness data MERGING remote sensing Arctic
在线阅读 下载PDF
A Newly Established Air Pollution Data Center in China 被引量:1
12
作者 Mei ZHENG Tianle ZHANG +11 位作者 Yaxin XIANG Xiao TANG Yinan WANG Guannan GENG Yuying WANG Yingjun LIU Chunxiang YE Caiqing YAN Yingjun CHEN Jiang ZHU Qiang ZHANG Tong ZHU 《Advances in Atmospheric Sciences》 2025年第4期597-604,共8页
Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of ... Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of China’s Major Research Plan entitled“Fundamental Researches on the Formation and Response Mechanism of the Air Pollution Complex in China”(or the Plan)has funded 76 research projects to explore the causes of air pollution in China,and the key processes of air pollution in atmospheric physics and atmospheric chemistry.In order to summarize the abundant data from the Plan and exhibit the long-term impacts domestically and internationally,an integration project is responsible for collecting the various types of data generated by the 76 projects of the Plan.This project has classified and integrated these data,forming eight categories containing 258 datasets and 15 technical reports in total.The integration project has led to the successful establishment of the China Air Pollution Data Center(CAPDC)platform,providing storage,retrieval,and download services for the eight categories.This platform has distinct features including data visualization,related project information querying,and bilingual services in both English and Chinese,which allows for rapid searching and downloading of data and provides a solid foundation of data and support for future related research.Air pollution control in China,especially in the past decade,is undeniably a global exemplar,and this data center is the first in China to focus on research into the country’s air pollution complex. 展开更多
关键词 air pollution data center PLATFORM multi-source data China
在线阅读 下载PDF
AI-Enhanced Secure Data Aggregation for Smart Grids with Privacy Preservation
13
作者 Congcong Wang Chen Wang +1 位作者 Wenying Zheng Wei Gu 《Computers, Materials & Continua》 SCIE EI 2025年第1期799-816,共18页
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use... As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis. 展开更多
关键词 Smart grid data security privacy protection artificial intelligence data aggregation
在线阅读 下载PDF
A novel method for clustering cellular data to improve classification
14
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
A Support Vector Machine(SVM)Model for Privacy Recommending Data Processing Model(PRDPM)in Internet of Vehicles
15
作者 Ali Alqarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期389-406,共18页
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie... Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance. 展开更多
关键词 Support vector machine big data IoV PRIVACY-PRESERVING
在线阅读 下载PDF
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data
16
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IOT adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
A New Encryption Mechanism Supporting the Update of Encrypted Data for Secure and Efficient Collaboration in the Cloud Environment
17
作者 Chanhyeong Cho Byeori Kim +1 位作者 Haehyun Cho Taek-Young Youn 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期813-834,共22页
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud... With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks. 展开更多
关键词 Cloud collaboration mode of operation data update efficiency
在线阅读 下载PDF
A Generative Model-Based Network Framework for Ecological Data Reconstruction
18
作者 Shuqiao Liu Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 SCIE EI 2025年第1期929-948,共20页
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Th... This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data reconstruction.The model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT Analysis.The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data.Reconstructed data is used to retain more semantic information to generate features.The model was applied to species in Southern California,USA,citing SWOT analysis data to train the model.Experiments show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development environments.The model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data domain.This study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development. 展开更多
关键词 Convolutional Neural Network(CNN) VAE GAN TOPSIS data reconstruction
在线阅读 下载PDF
Optimization of an Artificial Intelligence Database and Camera Installation for Recognition of Risky Passenger Behavior in Railway Vehicles
19
作者 Min-kyeong Kim Yeong Geol Lee +3 位作者 Won-Hee Park Su-hwan Yun Tae-Soon Kwon Duckhee Lee 《Computers, Materials & Continua》 SCIE EI 2025年第1期1277-1293,共17页
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in... Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly. 展开更多
关键词 AI railway vehicle risk factor smart detection AI training data
在线阅读 下载PDF
Impact of ocean data assimilation on the seasonal forecast of the 2014/15 marine heatwave in the Northeast Pacific Ocean
20
作者 Tiantian Tang Jiaying He +1 位作者 Huihang Sun Jingjia Luo 《Atmospheric and Oceanic Science Letters》 2025年第1期24-31,共8页
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em... A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms. 展开更多
关键词 Seasonal forecast Ocean data assimilation Marine heatwave Subsurface temperature
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部