Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations ...Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency.展开更多
This article provides a comprehensive review of various approaches to targeted drug delivery for liver cancer, an area of significant need due to the limited effectiveness of current treatments. The article begins by ...This article provides a comprehensive review of various approaches to targeted drug delivery for liver cancer, an area of significant need due to the limited effectiveness of current treatments. The article begins by highlighting the role of the liver in metabolism and discusses the high mortality associated with hepatocellular carcinoma (HCC). The shortcomings of traditional chemotherapy, such as multidrug resistance and off-target effects, necessitate the exploration of novel therapeutic strategies, with a focus on targeted approaches. The review details both passive and active targeting strategies. Passive targeting leverages the enhanced permeability and retention (EPR) effect and unique features of the tumor microenvironment, while active targeting employs specific ligands, such as peptides, antibodies, and proteins, to bind to overexpressed receptors on liver and tumor cells. The article further details many examples of active targeting using the asialoglycoprotein receptor (ASGPR), glycyrrhetinic acid (GA), transferrin receptor (TfR), and folate receptor (FR) on hepatocytes and tumor cells, demonstrating that there has been significant research effort put into this field. The importance of non-parenchymal cells in the liver is also discussed, and the article examines methods of targeting Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells for therapeutic benefit. The review goes on to cover the emerging field of subcellular targeting, including specific strategies to target the nucleus, mitochondria, and the endoplasmic reticulum/Golgi apparatus, noting that although there has been some progress, further research is needed in this area. The text finishes with a summary which acknowledges that while targeted therapies, including enzyme-activated prodrugs, such as Pradefovir, and other novel methods for drug delivery have shown significant promise, challenges remain in translating these therapies into clinical use due to limitations in understanding the sequential transport and the mechanisms of action. Ultimately, the article emphasizes the need for in-depth research to fully realize the potential of precision cancer therapies for liver cancer.展开更多
The YOLOv8 model faces challenges with dense target distribution and small size,resulting in lower accuracy in dense small target detection.To address these issues,an improved small target detection algorithm based on...The YOLOv8 model faces challenges with dense target distribution and small size,resulting in lower accuracy in dense small target detection.To address these issues,an improved small target detection algorithm based on the YOLOv8 model was proposed in this paper.Firstly,the Global Attention Module(GAM)was introduced to enhance data prediction capability and model expression ability.Secondly,the Space-to-Depth(SPD)module was incorporated into the backbone network for fine-grained feature information learning to mitigate feature information loss due to down-sampling.Finally,a 160 pixels×160 pixels feature layer was added to expand small target feature information and effectively reduce instances of missed targets.Experimental validation on the public VisDrone2019 UAV small target detaset demonstrated that the proposed model achieves significant performance improvement in small target detection tasks compared to existing models,exhibiting higher accuracy.展开更多
Nanotechnology in cancer therapy has significantly advanced treatment precision,effectiveness,and safety,improving patient outcomes and personalized care.Engineered smart nanoparticles and cell-based therapies are des...Nanotechnology in cancer therapy has significantly advanced treatment precision,effectiveness,and safety,improving patient outcomes and personalized care.Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells,precisely sensing the tumor microenvironment(TME)and sparing normal cells.These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation,and they can also overcome therapy resistance and deliver multiple drugs simultaneously.Despite these benefits,challenges remain in patient-specific responses and regulatory approvals for cell-based or nanoparticle therapies.Cell-based drug delivery systems(DDSs)that primarily utilize the immune-recognition principle between ligands and receptors have shown promise in selectively targeting and destroying cancer cells.This review aims to provide a comprehensive overview of various nanoparticle and cell-based drug delivery system types used in cancer research.It covers approved and experimental nanoparticle therapies,including liposomes,micelles,protein-based and polymeric nanoparticles,as well as cell-based DDSs like macrophages,T-lymphocytes,dendritic cells,viruses,bacterial ghosts,minicells,SimCells,and outer membrane vesicles(OMVs).The review also explains the role of TME and its impact on developing smart DDSs in combination therapies and integrating nanoparticles with cell-based systems for targeting cancer cells.By detailing DDSs at different stages of development,from laboratory research to clinical trials and approved treatments,this review provides the latest insights and a collection of valuable citations of the innovative strategies that can be improved for the precise treatment of cancer.展开更多
Background:Aberrant expression of RNA-binding proteins(RBPs)has been linked to a variety of diseases,including hematological disorders,cardiovascular diseases,and multiple types of cancer.Heterogeneous nuclear ribonuc...Background:Aberrant expression of RNA-binding proteins(RBPs)has been linked to a variety of diseases,including hematological disorders,cardiovascular diseases,and multiple types of cancer.Heterogeneous nuclear ribonucleoprotein C(HNRNPC),a member belonging to the heterogeneous nuclear ribonucleoprotein(hnRNP)family,plays a pivotal role in nucleic acid metabolism.Previous studies have underscored the significance of HNRNPC in tumorigenesis;however,its specific role in malignant tumor progression remains inadequately characterized.Methods:We leveraged publicly available databases,including The Cancer Genome Atlas(TCGA),to explore the potential involvement of HNRNPC across various cancers.Additionally,we performed experimental validation studies focused on liver cancer.Results:Our analysis revealed that HNRNPC is overexpressed in a wide range of common malignancies,including liver and lung cancers,and is strongly linked to unfavorable outcomes.Furthermore,HNRNPC was observed to be closely linked to tumor immunity.Through immune checkpoint analysis and immune cell infiltration assessment,HNRNPC emerged as a potential target for modulating tumor immunotherapy.Notably,silencing of HNRNPC markedly inhibited the proliferation,metastasis,and infiltration of liver cancer cells.Conclusion:In summary,our findings highlight HNRNPC as a prognostic marker in various cancers,including liver cancer,and suggest its involvement in shaping the tumor immune microenvironment.These insights offer potential avenues for improving clinical outcomes in tumors with elevated HNRNPC expression,particularly through immunotherapeutic strategies.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
Collecting duct carcinoma (CDC), or Bellini duct carcinoma, is a rare and aggressive subtype of renal cell carcinoma, accounting for 0.2% - 1% of cases. It often presents at an advanced stage with nonspecific symptoms...Collecting duct carcinoma (CDC), or Bellini duct carcinoma, is a rare and aggressive subtype of renal cell carcinoma, accounting for 0.2% - 1% of cases. It often presents at an advanced stage with nonspecific symptoms, requiring histopathology for diagnosis. Surgery remains the standard of care for localized disease, serving both diagnostic and therapeutic purposes, though adjuvant chemotherapy has shown limited efficacy. In metastatic CDC, the gemcitabine-cisplatin regimen is commonly used due to its resemblance to urothelial cancer and supportive data from prospective studies. Newer therapies offer promise in advanced cases. Immune checkpoint inhibitors, such as nivolumab alone or with ipilimumab, have shown benefits in patients with high PD-L1 expression. Targeted therapies like cabozantinib demonstrated efficacy and safety as first-line treatments in phase II trials, while sunitinib and sorafenib have shown responses in various case reports and cohorts. However, combining chemotherapy with bevacizumab did not improve outcomes in phase II trials. Despite therapeutic advances in urothelial cancers and clear cell renal tumors, the CDC entity remains a challenging malignancy, emphasizing the need for continued research to understand the true efficacy of treatment and to prolong survival in advanced disease.展开更多
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b...Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.展开更多
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ...Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.展开更多
BACKGROUND Rhabdomyosarcoma of the uterine cervix is a rare form of soft-tissue sarcoma predominantly affecting young women,with no established standard treatment protocol.CASE SUMMARY This report presents a case of a...BACKGROUND Rhabdomyosarcoma of the uterine cervix is a rare form of soft-tissue sarcoma predominantly affecting young women,with no established standard treatment protocol.CASE SUMMARY This report presents a case of a 17-year-old female patient presenting with in-termittent,non-cyclical vaginal bleeding and associated lower abdominal pain.Pelvic magnetic resonance imaging and additional examinations led to the dia-gnosis of cervical rhabdomyosarcoma.The primary treatment options for uterine cervical rhabdomyosarcoma include surgery,with or without adjuvant chemo-therapy and radiotherapy.This patient underwent surgery followed by a posto-perative chemotherapy regimen of gemcitabine combined with docetaxel and bevacizumab.After 19 months of follow-up,the patient showed no signs of re-currence and maintained good overall health.Given the rarity of cervix rhab-domyosarcoma,this case is presented to provide insights into the diagnosis and treatment of this condition.CONCLUSION This suggests that bevacizumab may demonstrate potential efficacy in the treat-ment of cervical rhabdomyosarcoma.In the future,targeted therapy is expected to play an increasingly significant role in the management of rhabdomyosarcoma.展开更多
In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fit...In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fitting for the wheel of the sintering trolley in steel production,which fuses multiple target extraction algorithms adapting to the working environment of the target.Firstly,based on obvious difference between the pixels of the target image and the non-target image in the gray histogram,these pixels were classified and then segmented in intraclass,removing interference factors and remaining the target image.Then,multiple segmentation results were merged and a final target image was obtained after small connected regions were eliminated.In the edge fitting stage,the edge fitting method with best-circumscribed rectangle was proposed to accurately fit the circular target edge.Finally,PnP algorithm was adopted for pose measurement of the target.The experimental results showed that the average estimation error of pose angleγwith respect to the z-axis rotation was 0.2346°,the average measurement error of pose angleαwith respect to the x-axis rotation was 0.1703°,and the average measurement error of pose angle β with respect to the y-axis rotation was 0.2275°.The proposed method has practical application value.展开更多
This letter addresses Wang and Zhang's investigation into the role of tankyrase 2(TNKS2)as a pivotal driver of malignancy in non-small cell lung cancer(NSCLC)through mechanisms including apoptosis inhibition,enhan...This letter addresses Wang and Zhang's investigation into the role of tankyrase 2(TNKS2)as a pivotal driver of malignancy in non-small cell lung cancer(NSCLC)through mechanisms including apoptosis inhibition,enhanced cellular migration,andβ-catenin pathway activation.Their study in NSCLC cell lines demonstrates that TNKS2 overexpression stabilizesβ-catenin,subsequently triggering onco-genic gene expression and facilitating cellular migration-key attributes of meta-static potential.These insights position TNKS2 as a compelling target for therapy and a potential prognostic marker in NSCLC.Nevertheless,translating these in vitro findings to clinical practice requires validation in in vivo models.Addi-tionally,further research should investigate TNKS2 expression in patient samples and assess its implications in therapy resistance and combination treatment strategies.展开更多
BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with ...BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with that of conventional care in adult out-of-hospital cardiac arrest(OHCA) survivors using clinical patient-level data.METHODS: We conducted a retrospective cohort study at an academic medical center in the USA to assess the cost-effectiveness of TTM in adult non-traumatic OHCA survivors between 1 January, 2019 and 30 June, 2023. The primary outcome was survival to hospital discharge. Incremental cost-effectiveness ratios(ICERs) were calculated and compared with various decision makers' willingness to pay. Cost-effectiveness acceptability curves were utilized to evaluate the economic attractiveness of TTM. Uncertainty about the incremental cost and effect was explored with a 95% confidence ellipse.RESULTS: Among 925 non-traumatic OHCA survivors, only 30(3%) received TTM. After adjusting for potential confounders, the TTM group did not demonstrate a significantly lower cost(delta cost-$5,141, 95% confidence interval [95% CI]: $-35,347 to $25,065, P=0.79) and higher survival to hospital discharge(delta effect 6%, 95% CI:-11% to 23%, P=0.41). Additionally, a 95% confidence ellipse indicated uncertainty reflected by evidence that the true value of the ICER could be in any of the quadrants of the cost-effectiveness plane.CONCLUSION: Although TTM did not demonstrate a clear survival benefit in this study, its potential cost-effectiveness warrants further investigation with larger sample sizes. These findings highlight the need for additional research to optimize TTM use in OHCA care and inform resource allocation decisions.展开更多
BACKGROUND Insulin therapy plays a crucial role in managing diabetes.Regulatory guidelines mandate assessing the pharmacokinetics(PK)and pharmacodynamics(PD)of new insulin formulations with euglycemic clamp techniques...BACKGROUND Insulin therapy plays a crucial role in managing diabetes.Regulatory guidelines mandate assessing the pharmacokinetics(PK)and pharmacodynamics(PD)of new insulin formulations with euglycemic clamp techniques before entry into the market.Typically,blood glucose(BG)levels are maintained at 5%below baseline to suppress endogenous insulin secretion in healthy volunteers.However,in scenarios where BG baseline is relatively low,maintaining it at 5%below baseline can increase hypoglycemic risk.Consequently,we adjusted to maintain it at 2.5%below a baseline of<4.00 mmol/L.It remains uncertain whether this adjustment impacts endogenous insulin inhibition or the PD of study insulin.AIM To evaluate and compare the PD and C-peptide status using two different target BG setting methods.METHODS Data came from euglycemic clamp trials assessing the PK/PD of insulin aspart(IAsp)in healthy participants.Target BG was set at 2.5%below baseline for those with a basal BG of<4.00 mmol/L(group A),and at 5%below baseline for others(group B).The area under the curve(AUC)of IAsp(AUC_(IAsp,0-8 h))and GIR from 0 to 8 hours(AUCGIR,0-8 h)was used to characterize the PK and PD of IAsp,respectively.The C-peptide reduction and PK/PD of IAsp were compared between the two groups.RESULTS Out of 135 subjects,15 were assigned to group A and 120 to group B;however,group B exhibited higher basal Cpeptide(1.59±0.36 vs 1.32±0.42 ng/mL,P=0.006).Following propensity score matching to adjust for basal Cpeptide differences,71 subjects(15 in group A and 56 in group B)were analyzed.No significant differences were observed in demographics,IAsp dosage,or clamp quality.Group B showed significantly higher baseline(4.35±0.21 vs 3.91±0.09 mmol/L,P<0.001),target(4.13±0.20 vs 3.81±0.08 mmol/L,P<0.001),and clamped(4.10±0.17 vs 3.80±0.06 mmol/L,P<0.001)BG levels.Both groups exhibited comparable C-peptide suppression(32.5%±10.0%vs 35.6%±12.1%,P=0.370)and similar IAsp activity(AUCGIR,0-8 h:1433±400 vs 1440±397 mg/kg,P=0.952)under nearly equivalent IAsp exposure(AUC_(IAsp,0-8 h):566±51 vs 571±85 ng/mL×h,P=0.840).CONCLUSION Maintaining BG at 2.5%below a baseline of<4.00 mmol/L did not compromise the endogenous insulin suppression nor alter the observed pharmacodynamic effects of the study insulin.展开更多
The cytochrome P4503A(CYP3A)gene family’s role in early progression of gastric cancer was comprehensively investigated.Its potential as a therapeutic target was evaluated.Upon literature review,aberrant expression of...The cytochrome P4503A(CYP3A)gene family’s role in early progression of gastric cancer was comprehensively investigated.Its potential as a therapeutic target was evaluated.Upon literature review,aberrant expression of the CYP3A gene family has a strong correlation with gastric cancer onset,although the precise underlying mechanisms remain unclear.To assess its potential as a biomarker for early diagnosis and a therapeutic target,we have provided a comprehensive review of the regulatory mechanisms governing CYP3A gene family expression in gastric cancer,as well as its relation with early tumor progression and the tumor microenvironment.The CYP3A gene family is crucial in the proliferation,migration,and invasion of gastric cancer cells and promotes cancer progression by modulating inflammatory responses and oxidative stress within the tumor microenvironment.Furthermore,genetic polymorphisms in CYP3A enzymes highlight its potential value in personalized medicine.Based on these findings,this paper explores the feasibility of developing inhibitors and activators targeting CYP3A enzymes and discusses potential applications in gene therapy.This research provides crucial theoretical support for the CYP3A gene family as an early diagnostic marker and therapeutic target for gastric cancer.In the future,multi-omics studies and large-scale clinical trials will be essential to advance clinical translation of these findings.展开更多
Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ab...Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.展开更多
This editorial provides insights into the pivotal role of checkpoint kinase 1(CHEK1)as both a biomarker and therapeutic target in colorectal cancer(CRC),based on findings from a recent study by Pang et al.Using single...This editorial provides insights into the pivotal role of checkpoint kinase 1(CHEK1)as both a biomarker and therapeutic target in colorectal cancer(CRC),based on findings from a recent study by Pang et al.Using single-cell RNA sequencing and immunohistochemistry,the study demonstrates significant CHEK1 overexpression in CRC tissues and identifies nitidine chloride as a potent CHEK1 inhibitor that disrupts DNA damage repair pathways.These findings underscore the therapeutic potential of CHEK1 inhibition and highlight the need for further research to address gaps in CRC treatment.展开更多
Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxy...Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxylum bungeanum,which promotes the management of obesity by triggering the browning of white adipose tissue(WAT)targeting the membrane receptor of transient receptor potential vanilloid 1(TRPV1).However,HAS easily undergoes configuration transformation and oxidative degradation.The short peptide CKGGRAKDC or adipose-targeting sequence(ATS)binds specifically to prohibitin on the surface of WAT cells and can be used as recognition assembly to enhance adipocyte targetability.Furthermore,mesoporous silica nanoparticles(MSNs)are widely used in drug delivery systems because of their large specific surface area and pore volume.Therefore,HAS-loaded adipose-targeted MSNs(MSNs-ATS)were developed to enhance the adipocyte targetability,safety,and efficacy of HAS,and tested on mature 3T3-L1 cells and obese mouse models.MSNs-ATS showed higher specificity for adipocyte targetability without obvious toxicity.HAS-loaded MSNs-ATS showed anti-obesity effects superior to those of HAS alone.In conclusion,we successfully developed adipocyte-targeted,HAS-loaded MSNs with good safety and anti-obesity effects.展开更多
BACKGROUND Unraveling the pathogenesis of colorectal cancer(CRC)can aid in developing prevention and treatment strategies.Aurora kinase A(AURKA)is a key participant in mitotic control and interacts with its co-activat...BACKGROUND Unraveling the pathogenesis of colorectal cancer(CRC)can aid in developing prevention and treatment strategies.Aurora kinase A(AURKA)is a key participant in mitotic control and interacts with its co-activator,the targeting protein for Xklp2(TPX2)microtubule nucleation factor.AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.AURKA/TPX2 co-overexpression in cancer may contribute to tumorigenesis.Despite its pivotal role in CRC development and progression,the action mechanism of AURKA remains unclear.Further research is needed to explore the complex interplay between AURKA and TPX2 and to develop effective targeted treatments for patients with CRC.AIM To compare effects of AURKA and TPX2 and their combined knockdown on CRC cells.METHODS We evaluated three CRC gene datasets about CRC(GSE32323,GSE25071,and GSE21510).Potential hub genes associated with CRC onset were identified using the Venn,search tool for the retrieval of interacting genes,and KOBAS platforms,with AURKA and TPX2 emerging as significant factors.Subsequently,cell models with knockdown of AURKA,TPX2,or both were constructed using SW480 and LOVO cells.Quantitative real-time polymerase chain reaction,western blotting,cell counting kit-8,cell cloning assays,flow cytometry,and Transwell assays were used.RESULTS Forty-three highly expressed genes and 39 poorly expressed genes overlapped in cancer tissues compared to controls from three datasets.In the protein-protein interaction network of highly expressed genes,AURKA was one of key genes.Its combined score with TPX2 was 0.999,and their co-expression score was 0.846.In CRC cells,knockdown of AURKA,TPX2,or both reduced cell viability and colony number,while blocking G0/G1 phase and enhancing cell apoptosis.Additionally,they were weakened cell proliferation and migration abilities.Furthermore,the expression levels of B-cell lymphoma-2-Associated X,caspase 3,and tumor protein P53,and E-cadherin increased with a decrease in B-cell lymphoma-2,N-cadherin,and vimentin proteins.These effects were amplified when both AURKA and TPX2 were concurrently downregulated.CONCLUSION Combined knockdown of AURKA and TPX2 was effective in suppressing the malignant phenotype in CRC.Coinhibition of gene expression is a potential developmental direction for CRC treatment.展开更多
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金supported in part by the National Natural Science Foundation of China Grants 62402085,61972062,62306060the Liaoning Doctoral Research Start-Up Fund 2023-BS-078+1 种基金the Dalian Youth Science and Technology Star Project 2023RQ023the Liaoning Basic Research Project 2023JH2/101300191.
文摘Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency.
文摘This article provides a comprehensive review of various approaches to targeted drug delivery for liver cancer, an area of significant need due to the limited effectiveness of current treatments. The article begins by highlighting the role of the liver in metabolism and discusses the high mortality associated with hepatocellular carcinoma (HCC). The shortcomings of traditional chemotherapy, such as multidrug resistance and off-target effects, necessitate the exploration of novel therapeutic strategies, with a focus on targeted approaches. The review details both passive and active targeting strategies. Passive targeting leverages the enhanced permeability and retention (EPR) effect and unique features of the tumor microenvironment, while active targeting employs specific ligands, such as peptides, antibodies, and proteins, to bind to overexpressed receptors on liver and tumor cells. The article further details many examples of active targeting using the asialoglycoprotein receptor (ASGPR), glycyrrhetinic acid (GA), transferrin receptor (TfR), and folate receptor (FR) on hepatocytes and tumor cells, demonstrating that there has been significant research effort put into this field. The importance of non-parenchymal cells in the liver is also discussed, and the article examines methods of targeting Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells for therapeutic benefit. The review goes on to cover the emerging field of subcellular targeting, including specific strategies to target the nucleus, mitochondria, and the endoplasmic reticulum/Golgi apparatus, noting that although there has been some progress, further research is needed in this area. The text finishes with a summary which acknowledges that while targeted therapies, including enzyme-activated prodrugs, such as Pradefovir, and other novel methods for drug delivery have shown significant promise, challenges remain in translating these therapies into clinical use due to limitations in understanding the sequential transport and the mechanisms of action. Ultimately, the article emphasizes the need for in-depth research to fully realize the potential of precision cancer therapies for liver cancer.
文摘The YOLOv8 model faces challenges with dense target distribution and small size,resulting in lower accuracy in dense small target detection.To address these issues,an improved small target detection algorithm based on the YOLOv8 model was proposed in this paper.Firstly,the Global Attention Module(GAM)was introduced to enhance data prediction capability and model expression ability.Secondly,the Space-to-Depth(SPD)module was incorporated into the backbone network for fine-grained feature information learning to mitigate feature information loss due to down-sampling.Finally,a 160 pixels×160 pixels feature layer was added to expand small target feature information and effectively reduce instances of missed targets.Experimental validation on the public VisDrone2019 UAV small target detaset demonstrated that the proposed model achieves significant performance improvement in small target detection tasks compared to existing models,exhibiting higher accuracy.
文摘Nanotechnology in cancer therapy has significantly advanced treatment precision,effectiveness,and safety,improving patient outcomes and personalized care.Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells,precisely sensing the tumor microenvironment(TME)and sparing normal cells.These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation,and they can also overcome therapy resistance and deliver multiple drugs simultaneously.Despite these benefits,challenges remain in patient-specific responses and regulatory approvals for cell-based or nanoparticle therapies.Cell-based drug delivery systems(DDSs)that primarily utilize the immune-recognition principle between ligands and receptors have shown promise in selectively targeting and destroying cancer cells.This review aims to provide a comprehensive overview of various nanoparticle and cell-based drug delivery system types used in cancer research.It covers approved and experimental nanoparticle therapies,including liposomes,micelles,protein-based and polymeric nanoparticles,as well as cell-based DDSs like macrophages,T-lymphocytes,dendritic cells,viruses,bacterial ghosts,minicells,SimCells,and outer membrane vesicles(OMVs).The review also explains the role of TME and its impact on developing smart DDSs in combination therapies and integrating nanoparticles with cell-based systems for targeting cancer cells.By detailing DDSs at different stages of development,from laboratory research to clinical trials and approved treatments,this review provides the latest insights and a collection of valuable citations of the innovative strategies that can be improved for the precise treatment of cancer.
文摘Background:Aberrant expression of RNA-binding proteins(RBPs)has been linked to a variety of diseases,including hematological disorders,cardiovascular diseases,and multiple types of cancer.Heterogeneous nuclear ribonucleoprotein C(HNRNPC),a member belonging to the heterogeneous nuclear ribonucleoprotein(hnRNP)family,plays a pivotal role in nucleic acid metabolism.Previous studies have underscored the significance of HNRNPC in tumorigenesis;however,its specific role in malignant tumor progression remains inadequately characterized.Methods:We leveraged publicly available databases,including The Cancer Genome Atlas(TCGA),to explore the potential involvement of HNRNPC across various cancers.Additionally,we performed experimental validation studies focused on liver cancer.Results:Our analysis revealed that HNRNPC is overexpressed in a wide range of common malignancies,including liver and lung cancers,and is strongly linked to unfavorable outcomes.Furthermore,HNRNPC was observed to be closely linked to tumor immunity.Through immune checkpoint analysis and immune cell infiltration assessment,HNRNPC emerged as a potential target for modulating tumor immunotherapy.Notably,silencing of HNRNPC markedly inhibited the proliferation,metastasis,and infiltration of liver cancer cells.Conclusion:In summary,our findings highlight HNRNPC as a prognostic marker in various cancers,including liver cancer,and suggest its involvement in shaping the tumor immune microenvironment.These insights offer potential avenues for improving clinical outcomes in tumors with elevated HNRNPC expression,particularly through immunotherapeutic strategies.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
文摘Collecting duct carcinoma (CDC), or Bellini duct carcinoma, is a rare and aggressive subtype of renal cell carcinoma, accounting for 0.2% - 1% of cases. It often presents at an advanced stage with nonspecific symptoms, requiring histopathology for diagnosis. Surgery remains the standard of care for localized disease, serving both diagnostic and therapeutic purposes, though adjuvant chemotherapy has shown limited efficacy. In metastatic CDC, the gemcitabine-cisplatin regimen is commonly used due to its resemblance to urothelial cancer and supportive data from prospective studies. Newer therapies offer promise in advanced cases. Immune checkpoint inhibitors, such as nivolumab alone or with ipilimumab, have shown benefits in patients with high PD-L1 expression. Targeted therapies like cabozantinib demonstrated efficacy and safety as first-line treatments in phase II trials, while sunitinib and sorafenib have shown responses in various case reports and cohorts. However, combining chemotherapy with bevacizumab did not improve outcomes in phase II trials. Despite therapeutic advances in urothelial cancers and clear cell renal tumors, the CDC entity remains a challenging malignancy, emphasizing the need for continued research to understand the true efficacy of treatment and to prolong survival in advanced disease.
基金supported by the National Natural Science Foundation of China,Nos.82171363,82371381(to PL),82171458(to XJ)Key Research and Development Project of Shaa nxi Province,Nos.2024SF-YBXM-404(to KY)。
文摘Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.
基金supported by grants from National Key R&D Program of China,No.2023YFC2506100(to JZ)the National Natural Science Foundation of China,No.82171062(to JZ).
文摘Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.
文摘BACKGROUND Rhabdomyosarcoma of the uterine cervix is a rare form of soft-tissue sarcoma predominantly affecting young women,with no established standard treatment protocol.CASE SUMMARY This report presents a case of a 17-year-old female patient presenting with in-termittent,non-cyclical vaginal bleeding and associated lower abdominal pain.Pelvic magnetic resonance imaging and additional examinations led to the dia-gnosis of cervical rhabdomyosarcoma.The primary treatment options for uterine cervical rhabdomyosarcoma include surgery,with or without adjuvant chemo-therapy and radiotherapy.This patient underwent surgery followed by a posto-perative chemotherapy regimen of gemcitabine combined with docetaxel and bevacizumab.After 19 months of follow-up,the patient showed no signs of re-currence and maintained good overall health.Given the rarity of cervix rhab-domyosarcoma,this case is presented to provide insights into the diagnosis and treatment of this condition.CONCLUSION This suggests that bevacizumab may demonstrate potential efficacy in the treat-ment of cervical rhabdomyosarcoma.In the future,targeted therapy is expected to play an increasingly significant role in the management of rhabdomyosarcoma.
基金supported by Key Research and Development Projects in Shaanxi Province (No. 2021GY-265)Xi’an University Talent Service Enterprise Project (No.2020KJRC0049)。
文摘In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fitting for the wheel of the sintering trolley in steel production,which fuses multiple target extraction algorithms adapting to the working environment of the target.Firstly,based on obvious difference between the pixels of the target image and the non-target image in the gray histogram,these pixels were classified and then segmented in intraclass,removing interference factors and remaining the target image.Then,multiple segmentation results were merged and a final target image was obtained after small connected regions were eliminated.In the edge fitting stage,the edge fitting method with best-circumscribed rectangle was proposed to accurately fit the circular target edge.Finally,PnP algorithm was adopted for pose measurement of the target.The experimental results showed that the average estimation error of pose angleγwith respect to the z-axis rotation was 0.2346°,the average measurement error of pose angleαwith respect to the x-axis rotation was 0.1703°,and the average measurement error of pose angle β with respect to the y-axis rotation was 0.2275°.The proposed method has practical application value.
文摘This letter addresses Wang and Zhang's investigation into the role of tankyrase 2(TNKS2)as a pivotal driver of malignancy in non-small cell lung cancer(NSCLC)through mechanisms including apoptosis inhibition,enhanced cellular migration,andβ-catenin pathway activation.Their study in NSCLC cell lines demonstrates that TNKS2 overexpression stabilizesβ-catenin,subsequently triggering onco-genic gene expression and facilitating cellular migration-key attributes of meta-static potential.These insights position TNKS2 as a compelling target for therapy and a potential prognostic marker in NSCLC.Nevertheless,translating these in vitro findings to clinical practice requires validation in in vivo models.Addi-tionally,further research should investigate TNKS2 expression in patient samples and assess its implications in therapy resistance and combination treatment strategies.
基金supported by Faculty of MedicineChiang Mai University+2 种基金supported by the National Center for Advancing Translational SciencesNational Institutes of Healththrough grant number UL1 TR001860. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH。
文摘BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with that of conventional care in adult out-of-hospital cardiac arrest(OHCA) survivors using clinical patient-level data.METHODS: We conducted a retrospective cohort study at an academic medical center in the USA to assess the cost-effectiveness of TTM in adult non-traumatic OHCA survivors between 1 January, 2019 and 30 June, 2023. The primary outcome was survival to hospital discharge. Incremental cost-effectiveness ratios(ICERs) were calculated and compared with various decision makers' willingness to pay. Cost-effectiveness acceptability curves were utilized to evaluate the economic attractiveness of TTM. Uncertainty about the incremental cost and effect was explored with a 95% confidence ellipse.RESULTS: Among 925 non-traumatic OHCA survivors, only 30(3%) received TTM. After adjusting for potential confounders, the TTM group did not demonstrate a significantly lower cost(delta cost-$5,141, 95% confidence interval [95% CI]: $-35,347 to $25,065, P=0.79) and higher survival to hospital discharge(delta effect 6%, 95% CI:-11% to 23%, P=0.41). Additionally, a 95% confidence ellipse indicated uncertainty reflected by evidence that the true value of the ICER could be in any of the quadrants of the cost-effectiveness plane.CONCLUSION: Although TTM did not demonstrate a clear survival benefit in this study, its potential cost-effectiveness warrants further investigation with larger sample sizes. These findings highlight the need for additional research to optimize TTM use in OHCA care and inform resource allocation decisions.
基金This retrospective analysis incorporated data from two clinical trials(CTR20220854 and CTR20222843)sponsored by Chongqing Chenan Biopharmaceutical Co.,Ltd.and Jiangsu Hengrui Pharmaceuticals Co.,Ltd.However,these sponsors did not partake in the study design,data interpretation,or manuscript preparation.
文摘BACKGROUND Insulin therapy plays a crucial role in managing diabetes.Regulatory guidelines mandate assessing the pharmacokinetics(PK)and pharmacodynamics(PD)of new insulin formulations with euglycemic clamp techniques before entry into the market.Typically,blood glucose(BG)levels are maintained at 5%below baseline to suppress endogenous insulin secretion in healthy volunteers.However,in scenarios where BG baseline is relatively low,maintaining it at 5%below baseline can increase hypoglycemic risk.Consequently,we adjusted to maintain it at 2.5%below a baseline of<4.00 mmol/L.It remains uncertain whether this adjustment impacts endogenous insulin inhibition or the PD of study insulin.AIM To evaluate and compare the PD and C-peptide status using two different target BG setting methods.METHODS Data came from euglycemic clamp trials assessing the PK/PD of insulin aspart(IAsp)in healthy participants.Target BG was set at 2.5%below baseline for those with a basal BG of<4.00 mmol/L(group A),and at 5%below baseline for others(group B).The area under the curve(AUC)of IAsp(AUC_(IAsp,0-8 h))and GIR from 0 to 8 hours(AUCGIR,0-8 h)was used to characterize the PK and PD of IAsp,respectively.The C-peptide reduction and PK/PD of IAsp were compared between the two groups.RESULTS Out of 135 subjects,15 were assigned to group A and 120 to group B;however,group B exhibited higher basal Cpeptide(1.59±0.36 vs 1.32±0.42 ng/mL,P=0.006).Following propensity score matching to adjust for basal Cpeptide differences,71 subjects(15 in group A and 56 in group B)were analyzed.No significant differences were observed in demographics,IAsp dosage,or clamp quality.Group B showed significantly higher baseline(4.35±0.21 vs 3.91±0.09 mmol/L,P<0.001),target(4.13±0.20 vs 3.81±0.08 mmol/L,P<0.001),and clamped(4.10±0.17 vs 3.80±0.06 mmol/L,P<0.001)BG levels.Both groups exhibited comparable C-peptide suppression(32.5%±10.0%vs 35.6%±12.1%,P=0.370)and similar IAsp activity(AUCGIR,0-8 h:1433±400 vs 1440±397 mg/kg,P=0.952)under nearly equivalent IAsp exposure(AUC_(IAsp,0-8 h):566±51 vs 571±85 ng/mL×h,P=0.840).CONCLUSION Maintaining BG at 2.5%below a baseline of<4.00 mmol/L did not compromise the endogenous insulin suppression nor alter the observed pharmacodynamic effects of the study insulin.
文摘The cytochrome P4503A(CYP3A)gene family’s role in early progression of gastric cancer was comprehensively investigated.Its potential as a therapeutic target was evaluated.Upon literature review,aberrant expression of the CYP3A gene family has a strong correlation with gastric cancer onset,although the precise underlying mechanisms remain unclear.To assess its potential as a biomarker for early diagnosis and a therapeutic target,we have provided a comprehensive review of the regulatory mechanisms governing CYP3A gene family expression in gastric cancer,as well as its relation with early tumor progression and the tumor microenvironment.The CYP3A gene family is crucial in the proliferation,migration,and invasion of gastric cancer cells and promotes cancer progression by modulating inflammatory responses and oxidative stress within the tumor microenvironment.Furthermore,genetic polymorphisms in CYP3A enzymes highlight its potential value in personalized medicine.Based on these findings,this paper explores the feasibility of developing inhibitors and activators targeting CYP3A enzymes and discusses potential applications in gene therapy.This research provides crucial theoretical support for the CYP3A gene family as an early diagnostic marker and therapeutic target for gastric cancer.In the future,multi-omics studies and large-scale clinical trials will be essential to advance clinical translation of these findings.
文摘Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.
文摘This editorial provides insights into the pivotal role of checkpoint kinase 1(CHEK1)as both a biomarker and therapeutic target in colorectal cancer(CRC),based on findings from a recent study by Pang et al.Using single-cell RNA sequencing and immunohistochemistry,the study demonstrates significant CHEK1 overexpression in CRC tissues and identifies nitidine chloride as a potent CHEK1 inhibitor that disrupts DNA damage repair pathways.These findings underscore the therapeutic potential of CHEK1 inhibition and highlight the need for further research to address gaps in CRC treatment.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0720)Research Center for the Development of the Comprehensive Health Industry and Rural Revitalization of Sichuan TCM(No.DJKYB202306)State Administration of Traditional Chinese Medicine of Sichuan Province of China(No.2020HJZX001).
文摘Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxylum bungeanum,which promotes the management of obesity by triggering the browning of white adipose tissue(WAT)targeting the membrane receptor of transient receptor potential vanilloid 1(TRPV1).However,HAS easily undergoes configuration transformation and oxidative degradation.The short peptide CKGGRAKDC or adipose-targeting sequence(ATS)binds specifically to prohibitin on the surface of WAT cells and can be used as recognition assembly to enhance adipocyte targetability.Furthermore,mesoporous silica nanoparticles(MSNs)are widely used in drug delivery systems because of their large specific surface area and pore volume.Therefore,HAS-loaded adipose-targeted MSNs(MSNs-ATS)were developed to enhance the adipocyte targetability,safety,and efficacy of HAS,and tested on mature 3T3-L1 cells and obese mouse models.MSNs-ATS showed higher specificity for adipocyte targetability without obvious toxicity.HAS-loaded MSNs-ATS showed anti-obesity effects superior to those of HAS alone.In conclusion,we successfully developed adipocyte-targeted,HAS-loaded MSNs with good safety and anti-obesity effects.
文摘BACKGROUND Unraveling the pathogenesis of colorectal cancer(CRC)can aid in developing prevention and treatment strategies.Aurora kinase A(AURKA)is a key participant in mitotic control and interacts with its co-activator,the targeting protein for Xklp2(TPX2)microtubule nucleation factor.AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.AURKA/TPX2 co-overexpression in cancer may contribute to tumorigenesis.Despite its pivotal role in CRC development and progression,the action mechanism of AURKA remains unclear.Further research is needed to explore the complex interplay between AURKA and TPX2 and to develop effective targeted treatments for patients with CRC.AIM To compare effects of AURKA and TPX2 and their combined knockdown on CRC cells.METHODS We evaluated three CRC gene datasets about CRC(GSE32323,GSE25071,and GSE21510).Potential hub genes associated with CRC onset were identified using the Venn,search tool for the retrieval of interacting genes,and KOBAS platforms,with AURKA and TPX2 emerging as significant factors.Subsequently,cell models with knockdown of AURKA,TPX2,or both were constructed using SW480 and LOVO cells.Quantitative real-time polymerase chain reaction,western blotting,cell counting kit-8,cell cloning assays,flow cytometry,and Transwell assays were used.RESULTS Forty-three highly expressed genes and 39 poorly expressed genes overlapped in cancer tissues compared to controls from three datasets.In the protein-protein interaction network of highly expressed genes,AURKA was one of key genes.Its combined score with TPX2 was 0.999,and their co-expression score was 0.846.In CRC cells,knockdown of AURKA,TPX2,or both reduced cell viability and colony number,while blocking G0/G1 phase and enhancing cell apoptosis.Additionally,they were weakened cell proliferation and migration abilities.Furthermore,the expression levels of B-cell lymphoma-2-Associated X,caspase 3,and tumor protein P53,and E-cadherin increased with a decrease in B-cell lymphoma-2,N-cadherin,and vimentin proteins.These effects were amplified when both AURKA and TPX2 were concurrently downregulated.CONCLUSION Combined knockdown of AURKA and TPX2 was effective in suppressing the malignant phenotype in CRC.Coinhibition of gene expression is a potential developmental direction for CRC treatment.