期刊文献+
共找到40,086篇文章
< 1 2 250 >
每页显示 20 50 100
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
1
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
A Latency-Aware and Fault-Tolerant Framework for Resource Scheduling and Data Management in Fog-Enabled Smart City Transportation Systems
2
作者 Ibrar Afzal Noor ul Amin +1 位作者 Zulfiqar Ahmad Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期1377-1399,共23页
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ... Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem. 展开更多
关键词 Fog computing smart cities smart transportation data management fault tolerance resource scheduling
在线阅读 下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
3
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
Bilevel Optimal Scheduling of Island Integrated Energy System Considering Multifactor Pricing
4
作者 Xin Zhang Mingming Yao +3 位作者 Daiwen He Jihong Zhang Peihong Yang Xiaoming Zhang 《Energy Engineering》 EI 2025年第1期349-378,共30页
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys... In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified. 展开更多
关键词 Bilevel optimal scheduling load aggregator integrated energy operator carbon emission dynamic pricing mechanism
在线阅读 下载PDF
Autonomous sortie scheduling for carrier aircraft fleet under towing mode
5
作者 Zhilong Deng Xuanbo Liu +4 位作者 Yuqi Dou Xichao Su Haixu Li Lei Wang Xinwei Wang 《Defence Technology(防务技术)》 2025年第1期1-12,共12页
Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.... Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance. 展开更多
关键词 Carrier aircraft Autonomous sortie scheduling Resource allocation Collision-avoidance Hybrid flow-shop scheduling problem
在线阅读 下载PDF
Research on Optimization of Hierarchical Quantum Circuit Scheduling Strategy
6
作者 Ziao Han Hui Li +2 位作者 Kai Lu Shujuan Liu Mingmei Ju 《Computers, Materials & Continua》 2025年第3期5097-5113,共17页
Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parall... Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parallelized.Based on this,two quantum circuit scheduling optimization approaches are designed and integrated into the quantum circuit compilation process.Firstly,we introduce the Layered Topology Scheduling Approach(LTSA),which employs a greedy algorithm and leverages the principles of topological sorting in graph theory.LTSA allocates quantum gates to a layered structure,maximizing the concurrent execution of quantum gate operations.Secondly,the Layerwise Conflict Resolution Approach(LCRA)is proposed.LCRA focuses on utilizing directly executable quantum gates within layers.Through the insertion of SWAP gates and conflict resolution checks,it minimizes conflicts and enhances parallelism,thereby optimizing the overall computational efficiency.Experimental findings indicate that LTSA and LCRA individually achieve a noteworthy reduction of 51.1%and 53.2%,respectively,in the number of inserted SWAP gates.Additionally,they contribute to a decrease in hardware gate overhead by 14.7%and 15%,respectively.Considering the intricate nature of quantum circuits and the temporal dependencies among different layers,the amalgamation of both approaches leads to a remarkable 51.6%reduction in inserted SWAP gates and a 14.8%decrease in hardware gate overhead.These results underscore the efficacy of the combined LTSA and LCRA in optimizing quantum circuit compilation. 展开更多
关键词 Quantum circuit scheduling layered topology scheduling approach(LTSA) layerwise conflict resolu-tion approach(LCRA) quantum computing quantum circuit compilation
在线阅读 下载PDF
Centralized-Distributed Scheduling Strategy of Distribution Network Based on Multi-Temporal Hierarchical Cooperative Game
7
作者 Guoqing Li Jianing Li +1 位作者 Kefei Yan Jing Bian 《Energy Engineering》 2025年第3期1113-1136,共24页
A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimizatio... A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimization interaction in distribution network transformer areas,as well as the problem of significant photovoltaic curtailment due to the inability to consume photovoltaic power locally.A scheduling architecture combiningmulti-temporal scales with a three-level decision-making hierarchy is established:the overall approach adopts a centralized-distributed method,analyzing the operational characteristics and interaction relationships of the distribution network center layer,cluster layer,and transformer area layer,providing a“spatial foundation”for subsequent optimization.The optimization process is divided into two stages on the temporal scale:in the first stage,based on forecasted electricity load and demand response characteristics,time-of-use electricity prices are utilized to formulate day-ahead optimization strategies;in the second stage,based on the charging and discharging characteristics of energy storage vehicles and multi-agent cooperative game relationships,rolling electricity prices and optimal interactive energy solutions are determined among clusters and transformer areas using the Nash bargaining theory.Finally,a distributed optimization algorithm using the bisection method is employed to solve the constructed model.Simulation results demonstrate that the proposed optimization strategy can facilitate photovoltaic consumption in the distribution network and enhance grid economy. 展开更多
关键词 Photovoltaic consumption distribution area optimal scheduling cooperative game
在线阅读 下载PDF
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
8
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
Integrated Optimization Scheduling Model for Ship Outfitting Production with Endogenous Uncertainties
9
作者 Lijun Liu Pu Cao +2 位作者 Yajing zhou Zhixin Long Zuhua Jiang 《哈尔滨工程大学学报(英文版)》 2025年第1期194-209,共16页
Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan ... Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced. 展开更多
关键词 Ship outfitting Production scheduling Purchase planning Endogenous uncertainty Multistage stochastic programming
在线阅读 下载PDF
Innovative Approaches to Task Scheduling in Cloud Computing Environments Using an Advanced Willow Catkin Optimization Algorithm
10
作者 Jeng-Shyang Pan Na Yu +3 位作者 Shu-Chuan Chu An-Ning Zhang Bin Yan Junzo Watada 《Computers, Materials & Continua》 2025年第2期2495-2520,共26页
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource... The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment. 展开更多
关键词 Willow catkin optimization algorithm cloud computing task scheduling opposition-based learning strategy
在线阅读 下载PDF
Flexibility evaluation and optimal scheduling of flexible energy loads considering association characteristics in residential buildings
11
作者 Xi Luo Tingting Li +1 位作者 Hui Wu Yupan Wang 《Building Simulation》 2025年第2期423-447,共25页
The existing researches on the flexibility evaluation and optimal scheduling of flexible loads in residential buildings do not fully consider the association characteristics of different loads,resulting in a large dev... The existing researches on the flexibility evaluation and optimal scheduling of flexible loads in residential buildings do not fully consider the association characteristics of different loads,resulting in a large deviation between the calculated results and experimental results of optimization scheduling.A flexibility evaluation methodology and an optimization model considering load associations characteristics are proposed for flexible loads in residential buildings.Temporal flexibility ratio,which is the ratio of temporal flexibility considering association characteristics to that without considering association characteristics,is defined in this study.The optimization model is solved using the CPLEX solver under three different scenarios,namely,a scenario only considering the temporal overlapping load associations,a scenario only considering the temporal non-overlapping load associations,and a scenario considering both types of load associations.It was shown that in the residential building case in this study,the cooking loads with association characteristics exhibit less temporal flexibility but higher temporal flexibility ratio of up to 71.21%,while laundry loads exhibit higher temporal flexibility,but their temporal flexibility ratio is only around 36.84%.Additionally,when the users adopted the time of use(TOU)price,their electricity costs under the three considered scenarios increased by 0.00%,7.57%,and 7.57%relative to the scenario without considering load associations,respectively.When installing a 3-kW household photovoltaic system,the electricity costs under the three scenarios increased by 0.00%,1.28%,and 1.28%,respectively.As highlighted in the results,temporal non-overlapping association characteristics greatly affect the optimal scheduling of flexible energy loads,especially under TOU,while temporal overlapping association characteristics have little effect on that. 展开更多
关键词 renewable energy flexible energy loads loads association characteristics optimal scheduling energy flexibility
原文传递
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
12
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework
13
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
An Adaptive Cooperated Shuffled Frog-Leaping Algorithm for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Processes
14
作者 Lianqiang Wu Deming Lei Yutong Cai 《Computers, Materials & Continua》 2025年第5期1771-1789,共19页
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ... Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility. 展开更多
关键词 Batch processing machine parallel machine scheduling shuffled frog-leaping algorithm fabric dyeing process machine eligibility
在线阅读 下载PDF
Day-Ahead Nonlinear Optimization Scheduling for Industrial Park Energy Systems with Hybrid Energy Storage
15
作者 Jiacheng Guo Yimo Luo +1 位作者 Bin Zou Jinqing Peng 《Engineering》 2025年第3期331-347,共17页
Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.... Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage. 展开更多
关键词 Industrial park energy system Hybrid energy storage Active energy storage Configuration optimization Day-ahead optimal scheduling
在线阅读 下载PDF
Deep Reinforcement Learning-based Multi-Objective Scheduling for Distributed Heterogeneous Hybrid Flow Shops with Blocking Constraints
16
作者 Xueyan Sun Weiming Shen +3 位作者 Jiaxin Fan Birgit Vogel-Heuser Fandi Bi Chunjiang Zhang 《Engineering》 2025年第3期278-291,共14页
This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved pr... This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved proximal policy optimization(IPPO)method to make real-time decisions for the DHHBFSP.A multi-objective Markov decision process is modeled for the DHHBFSP,where the reward function is represented by a vector with dynamic weights instead of the common objectiverelated scalar value.A factory agent(FA)is formulated for each factory to select unscheduled jobs and is trained by the proposed IPPO to improve the decision quality.Multiple FAs work asynchronously to allocate jobs that arrive randomly at the shop.A two-stage training strategy is introduced in the IPPO,which learns from both single-and dual-policy data for better data utilization.The proposed IPPO is tested on randomly generated instances and compared with variants of the basic proximal policy optimization(PPO),dispatch rules,multi-objective metaheuristics,and multi-agent reinforcement learning methods.Extensive experimental results suggest that the proposed strategies offer significant improvements to the basic PPO,and the proposed IPPO outperforms the state-of-the-art scheduling methods in both convergence and solution quality. 展开更多
关键词 Multi-objective Markov decision process Multi-agent deep reinforcement learning Proximal policy optimization Distributed hybrid flow-shop scheduling Blocking constraints
在线阅读 下载PDF
Monthly Reduced Time-Period Scheduling of Thermal Generators and Energy Storage Considering Daily Minimum Chargeable Energy of Energy Storage
17
作者 Xingxu Zhu Shiye Wang +3 位作者 Gangui Yan Junhui Li Hongda Dong Chenggang Li 《Energy Engineering》 2025年第4期1469-1489,共21页
To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy stora... To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions. 展开更多
关键词 Monthly scheduling thermal generators energy storage daily minimum chargeable energy decision time-period reduction unit start-up and shut-down unit commitment renewable energy
在线阅读 下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
18
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing scheduling chimp optimization algorithm whale optimization algorithm
在线阅读 下载PDF
Three-Level Optimal Scheduling and Power Allocation Strategy for Power System Containing Wind-Storage Combined Unit 被引量:1
19
作者 Jingjing Bai Yunpeng Cheng +2 位作者 Shenyun Yao Fan Wu Cheng Chen 《Energy Engineering》 EI 2024年第11期3381-3400,共20页
To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power ... To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis. 展开更多
关键词 Wind power cluster energy storage system wind-storage combined unit optimal scheduling power allocation
在线阅读 下载PDF
Optimized scheduling of integrated energy systems for low carbon economy considering carbon transaction costs 被引量:1
20
作者 Chao Liu Weiru Wang +2 位作者 Jing Li Xinyuan Liu Yongning Chi 《Global Energy Interconnection》 EI CSCD 2024年第4期377-390,共14页
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st... With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits. 展开更多
关键词 Demand response Combined cooling Heating and power system Carbon transaction costs Flexible electric and thermal loads Optimal scheduling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部