In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development...The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.展开更多
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce...In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.展开更多
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe...Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.展开更多
A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods....A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.展开更多
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrol...In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.展开更多
A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidificatio...A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.展开更多
Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0...Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping.展开更多
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia...The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.展开更多
Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-d...Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.展开更多
Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electr...Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electron microscopy were used to characterize the crystal structure, size and morphology. The results show that the sample(S-2) is composed of pure ZnFe_2O_4 when the molar ratio of Zn^(2+)/Fe^(2+)in the electrolyte is 0.35. Decreasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-1) is composed of ZnFe_2O_4 and α-Fe_2O_3, whereas increasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-3) is composed of ZnFe_2O_4 and Zn O. The lattice parameters of ZnFe_2O_4 are influenced by the molar ratio of Zn^(2+)/Fe: Zn at excess decreases the cell volume whereas Fe at excess increases the cell volume of Zn Fe_2O_4. All the samples have the dendritic structure, of which S-2 has micron-sized lush branches with nano-sized leaves. UV–Vis diffuse reflectance spectra were acquired by a spectrophotometer. The absorption edges gradually blue shift with the increase of the molar ratio of Zn^(2+)/Fe^(2+). Photocatalytic activities for water splitting were investigated under Xe light irradiation in an aqueous olution containing 0.1 mol·L^(-1)Na_2S/0.02 mol·L^(-1)Na_2SO_3 in a glass reactor. The relatively highest photocatalytic activity with 1.41 μmol·h-1· 0.02 g^(-1)was achieved by pure ZnFe_2O_4sample(S-2). The photocatalytic activity of the mixture phase of Zn Fe_2O_4 and α-Fe_2O_3(S-1) is better than ZnF e_2O_4 and ZnO(S-3).展开更多
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement...Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.展开更多
Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (P...Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (PS) moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology. And poly(dimethylsiloxane) (PDMS) replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds. Scanning electronic microscope (SEM) was employed to investigate the morphology and microstructures on moulds and replicas. Both the static and dynamic contact angles between water droplet and PDMS replicas' surface were also measured. As a result, similar microstructure can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures.展开更多
In this paper, the cement paste and the mortar were tested using the PF-QNM technique. It is shown that the PF-QNM technique is very powerful to characterize the mechanical properties of micro-and nanostructures in th...In this paper, the cement paste and the mortar were tested using the PF-QNM technique. It is shown that the PF-QNM technique is very powerful to characterize the mechanical properties of micro-and nanostructures in the cement-based materials. It does not have strict requirements for test environment and it does not damage the surface of the material. High-resolution images can be obtained very easily, and they can be analyzed statistically. The test results show that PF-QNM analysis can test not only the mechanical properties of the cement paste, but also investigate the interfacial regions in the cement-based material, including the variation in the mechanical properties of interface regions and the extension of the interfacial regions. During the test, care must be taken to choose the size of test area;indeed, a test area too small is not representative but too large leads to lack of stability. The recommended side is a square with a length of in the range 10-30 μm.展开更多
The micro-single crystal material spinel LiMn2-xAlxO4 was prepared by a sol-gel procedure and modified by alumina; the electrochemical measurements show that the performances and characteristics of modified LiMn2-xAlx...The micro-single crystal material spinel LiMn2-xAlxO4 was prepared by a sol-gel procedure and modified by alumina; the electrochemical measurements show that the performances and characteristics of modified LiMn2-xAlxO4 electrode material are better than those of LiMn204. Hence, the modified LiMn2- AlxO4 is a good cathode material for lithium batteries. This can be explained that the size of the modified particle is larger than that of unmodified material, so electrons can be easily transported between the particles.展开更多
ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wett...ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.展开更多
The work describes the properties of soluble organic silicates and their applications to obtain nanocomposite materials. We analyzed the properties of the water-soluble high-modulus silicate systems and their technolo...The work describes the properties of soluble organic silicates and their applications to obtain nanocomposite materials. We analyzed the properties of the water-soluble high-modulus silicate systems and their technology for producing. The aim of this paper is the comparison properties of binders based on liquid glass containing strong organic bases silicates. We have shown how these systems are transformed from lower to higher oligomers through the formation of the silica sol and the implementation of the sol-gel process for these oligomers. We have conducted advanced research of various aspects of the use of these materials as the binder. Advantages of strong organic bases silicates in the preparation of heat resistant, nanocomposite materials are shown. Ways to obtaining quaternary ammonium silicates and their use to produce nanocomposites are proposed. Products obtained in this way can be used as a binder in the preparation of nanostruetured composite materials, water-based paints, coatings, etc. Modifiers have been proposed for making of hybrid nanostructured composite materials by a sol-gel process. There have been shown of structuring phenomena some aspects, synthesis and application of hybrid materials based on silica with grafted polymers. It has been shown, the possibility of modifying compositions using the nanostructuring agents such as tetrafurfuryloxysilane. This paper also describes methods for the synthesis of products for modifying a sol-gel process using organic soluble silicates. We are displaying their use for the production of new nanocomposite materials and coatings for protection against various external factors.展开更多
The nanotechnology is of great siguifieance to the country's future economic, social development and national security, and it will bring a revolutionary change to the medicine, manufacturing, materials and informati...The nanotechnology is of great siguifieance to the country's future economic, social development and national security, and it will bring a revolutionary change to the medicine, manufacturing, materials and information communication and other industries, therefore, in recent years, nano science and technology is greatly favored all over the world especially in developed countries. All the countries (areas) in the world have developed the nanotechnology as the main driver of the technical innovation in the twenty-first century, and have formulated development strategies and plans, to promote and guide their development in nanotechnology, which lead to fiercer and fiercer competition. In this paper, the author mainly introduces the application of nano materials in catalysis, filtration, separation, paint and new fine chemical industry and so on.展开更多
A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing(SON) structure was quantitatively investigated. We empl...A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing(SON) structure was quantitatively investigated. We employ a diffuse interface model that incorporates the mechanism of surface diffusion. The mechanism of the fabrication is systematically integrated for high reliability of computational analysis. A semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. Moreover, the theoretical analysis provides the guidance that is ordered by the fundamental geometrical design parameters to guide different fabrications of SON structures. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of nano/micro-fabrications.展开更多
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d...This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.展开更多
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金Sponsored by National Natural Science Foundation of China (21231002,21276026,21271023,21173021,91022006,11202193,11172276,and 11072225)the 111 Project ( B07012)+1 种基金the Program of Cooperation of the Beijing Education Commission ( 20091739006)Specialized Research Fund for the Doctoral Program of Higher Education ( 20101101110031)
文摘The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.
文摘In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.
文摘Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.
文摘A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.
文摘In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.
基金financially supported by the Fundamental Research Funds for the National Natural Science Foundation of China(Nos.21071107,21277094,and21103119)Production and Research Collaborative Innovation Project of Jiangsu Province(No.BY2012123)+9 种基金Natural Science Foundation of Jiangsu Province(No.BK2012167)Scienceand Technology Pillar Program(Industry)of Jiangsu Province(No.BE2012101)Collegiate Natural Science Fund of Jiangsu Province(Nos.12KJA430005,09KJB30003,and11KJB430012)Key Laboratory for Environment Functional Materials of Suzhou(No.SZS201008)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Applied Basic Research Project of Suzhou(No.SYG201242)Industrial Surport Project of Suzhou(No.SG201138)Jiangsu Key Laboratory of Material Tribology(No.Kjsmcx2011001)Jiangsu Key Laboratory for Photon Manufacturing(No.GZ201111)Jiangsu Provincial Key Laboratory for Interventional Medical Devices(No.Jr1210)Creative Project of Postgraduate of Jiangsu Province(No.CXZZ11_0954)
文摘A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.
基金financially supported by the Department of Education of Liaoning Province of China
文摘Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping.
基金Projects(51134007,21003161,21250110060) supported by the National Natural Science Foundation of ChinaProject(11MX10) supported by Central South University Annual Mittal-Founded Innovation ProjectProject(2011ssxt086) supported by Fundamental Research Funds for the Central Universities,China
文摘The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.
基金supported by the Hunan Science Fund for Distinguished Young Scholars (2023JJ10069)the National Natural Science Foundation of China (52172169)。
文摘Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.
基金Supported by the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(2015DX07)
文摘Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electron microscopy were used to characterize the crystal structure, size and morphology. The results show that the sample(S-2) is composed of pure ZnFe_2O_4 when the molar ratio of Zn^(2+)/Fe^(2+)in the electrolyte is 0.35. Decreasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-1) is composed of ZnFe_2O_4 and α-Fe_2O_3, whereas increasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-3) is composed of ZnFe_2O_4 and Zn O. The lattice parameters of ZnFe_2O_4 are influenced by the molar ratio of Zn^(2+)/Fe: Zn at excess decreases the cell volume whereas Fe at excess increases the cell volume of Zn Fe_2O_4. All the samples have the dendritic structure, of which S-2 has micron-sized lush branches with nano-sized leaves. UV–Vis diffuse reflectance spectra were acquired by a spectrophotometer. The absorption edges gradually blue shift with the increase of the molar ratio of Zn^(2+)/Fe^(2+). Photocatalytic activities for water splitting were investigated under Xe light irradiation in an aqueous olution containing 0.1 mol·L^(-1)Na_2S/0.02 mol·L^(-1)Na_2SO_3 in a glass reactor. The relatively highest photocatalytic activity with 1.41 μmol·h-1· 0.02 g^(-1)was achieved by pure ZnFe_2O_4sample(S-2). The photocatalytic activity of the mixture phase of Zn Fe_2O_4 and α-Fe_2O_3(S-1) is better than ZnF e_2O_4 and ZnO(S-3).
基金supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200)the National Natural Science Foundation of China (NSFC, Nos. 52103236, 91963212, 21875260)Beijing National Laboratory for Molecular Sciences (No. BNLMSCXXM-202005)。
文摘Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
基金the National Natural Science Foundation of China(No.20573055)
文摘Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (PS) moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology. And poly(dimethylsiloxane) (PDMS) replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds. Scanning electronic microscope (SEM) was employed to investigate the morphology and microstructures on moulds and replicas. Both the static and dynamic contact angles between water droplet and PDMS replicas' surface were also measured. As a result, similar microstructure can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures.
基金Funded by the National Natural Science Foundation of China(51778582&51879235)the National Key R&D Plan(2017YFC0804809)
文摘In this paper, the cement paste and the mortar were tested using the PF-QNM technique. It is shown that the PF-QNM technique is very powerful to characterize the mechanical properties of micro-and nanostructures in the cement-based materials. It does not have strict requirements for test environment and it does not damage the surface of the material. High-resolution images can be obtained very easily, and they can be analyzed statistically. The test results show that PF-QNM analysis can test not only the mechanical properties of the cement paste, but also investigate the interfacial regions in the cement-based material, including the variation in the mechanical properties of interface regions and the extension of the interfacial regions. During the test, care must be taken to choose the size of test area;indeed, a test area too small is not representative but too large leads to lack of stability. The recommended side is a square with a length of in the range 10-30 μm.
基金the Science and Research Reward Fund Program of Shandong Excellent Young Scientist of China (No. 2007BS04044)
文摘The micro-single crystal material spinel LiMn2-xAlxO4 was prepared by a sol-gel procedure and modified by alumina; the electrochemical measurements show that the performances and characteristics of modified LiMn2-xAlxO4 electrode material are better than those of LiMn204. Hence, the modified LiMn2- AlxO4 is a good cathode material for lithium batteries. This can be explained that the size of the modified particle is larger than that of unmodified material, so electrons can be easily transported between the particles.
基金Project supported by the 973 Program of China (Grant No. 2006CB302900)National Natural Science Foundation of China(Grant No. 50872129)
文摘ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.
文摘The work describes the properties of soluble organic silicates and their applications to obtain nanocomposite materials. We analyzed the properties of the water-soluble high-modulus silicate systems and their technology for producing. The aim of this paper is the comparison properties of binders based on liquid glass containing strong organic bases silicates. We have shown how these systems are transformed from lower to higher oligomers through the formation of the silica sol and the implementation of the sol-gel process for these oligomers. We have conducted advanced research of various aspects of the use of these materials as the binder. Advantages of strong organic bases silicates in the preparation of heat resistant, nanocomposite materials are shown. Ways to obtaining quaternary ammonium silicates and their use to produce nanocomposites are proposed. Products obtained in this way can be used as a binder in the preparation of nanostruetured composite materials, water-based paints, coatings, etc. Modifiers have been proposed for making of hybrid nanostructured composite materials by a sol-gel process. There have been shown of structuring phenomena some aspects, synthesis and application of hybrid materials based on silica with grafted polymers. It has been shown, the possibility of modifying compositions using the nanostructuring agents such as tetrafurfuryloxysilane. This paper also describes methods for the synthesis of products for modifying a sol-gel process using organic soluble silicates. We are displaying their use for the production of new nanocomposite materials and coatings for protection against various external factors.
文摘The nanotechnology is of great siguifieance to the country's future economic, social development and national security, and it will bring a revolutionary change to the medicine, manufacturing, materials and information communication and other industries, therefore, in recent years, nano science and technology is greatly favored all over the world especially in developed countries. All the countries (areas) in the world have developed the nanotechnology as the main driver of the technical innovation in the twenty-first century, and have formulated development strategies and plans, to promote and guide their development in nanotechnology, which lead to fiercer and fiercer competition. In this paper, the author mainly introduces the application of nano materials in catalysis, filtration, separation, paint and new fine chemical industry and so on.
基金the National Natural Science Foundation of China(No.51775154)the ZheJiang Provincial Natural Science Foundation of China(No.LZ15E050004)
文摘A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing(SON) structure was quantitatively investigated. We employ a diffuse interface model that incorporates the mechanism of surface diffusion. The mechanism of the fabrication is systematically integrated for high reliability of computational analysis. A semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. Moreover, the theoretical analysis provides the guidance that is ordered by the fundamental geometrical design parameters to guide different fabrications of SON structures. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of nano/micro-fabrications.
基金Supported by the National Natural Science Foundation of China(41602159)
文摘This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.