Micro triadic structure is an important motif and serves the building block of complex networks.In this paper,the authors define structure entropy for a social network and explain this concept by using the coded triad...Micro triadic structure is an important motif and serves the building block of complex networks.In this paper,the authors define structure entropy for a social network and explain this concept by using the coded triads proposed by Davis and Leinhardt in 1972.The proposed structure entropy serves as a new macro-evolution index to measure the network’s stability at a given timestamp.Empirical analysis of real-world network structure entropy discloses rich information on the mechanism that yields given triadic motifs frequency distribution.This paper illustrates the intrinsic link between the micro dyadic/triadic motifs and network structure entropy.Importantly,the authors find that the high proportion of reciprocity and transitivity results in the emergence of hierarchy,order,and cooperation of online social networks.展开更多
Refined risk prediction must be achieved to guarantee the safe and steady operation of chemical production processes.However,there is high nonlinearity and association coupling among massive,complicated multisource pr...Refined risk prediction must be achieved to guarantee the safe and steady operation of chemical production processes.However,there is high nonlinearity and association coupling among massive,complicated multisource process data,resulting in a low accuracy of existing prediction technology.For that reason,a real-time risk prediction method for chemical processes based on the attention-based bidirectional long short-term memory(Attention-based Bi-LSTM)is proposed in this study.First,multisource process data,such as temperature,pressure,flow rate,and liquid level,are preprocessed for denoising.Data correlation is analyzed in time windows by setting time windows and moving step lengths to explore correlations,thus establishing a complex network model oriented to the chemical production process.Second,network structure entropy is introduced to reduce the dimensions of the multisource process data.Moreover,a 1D relative risk sequence is acquired by maxemin deviation standardization to judge whether the chemical process is in a steady state.Finally,an Attention-based Bi-LSTM algorithm is established by integrating the attention mechanism and the Bi-LSTM network to fit and train 1D relative risk sequences.In that way,the proposed algorithm achieves real-time prediction and intelligent perception of risk states during chemical production.A case study based on the Tennessee Eastman process(TEP)is conducted.The validity and reasonability of the proposed method are verified by analyzing distribution laws of relative risks under normal and fault conditions.Also,the proposed algorithm importantly improves the prediction accuracy of chemical process risks relative to that of existing prediction technologies.展开更多
Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic r...Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features,which cannot fully utilize the grayscale values containing important intrinsic information about brain structure.In this study,we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly.Normalized network structure entropy(NNSE)is then introduced to quantify the overall heterogeneities of these graphs.The results demonstrate a decrease in the NNSEs of gray matter with age.Compared with the middle-aged and the elderly,the larger values of the NNSE in the younger group may indicate more homogeneous network structures,smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion.In addition,the hub nodes of different adult age groups are primarily located in the precuneus,cingulate gyrus,superior temporal gyrus,inferior temporal gyrus,parahippocampal gyrus,insula,precentral gyrus and postcentral gyrus.Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging.展开更多
Abnormal conditions are hazardous in complex process systems, and the aim of condition recognition is to detect abnormal conditions and thus avoid severe accidents. The relationship of linkage fluctuation between moni...Abnormal conditions are hazardous in complex process systems, and the aim of condition recognition is to detect abnormal conditions and thus avoid severe accidents. The relationship of linkage fluctuation between monitoring variables can characterize the operation state of the system. In this study,we present a straightforward and fast computational method, the multivariable linkage coarse graining(MLCG) algorithm, which converts the linkage fluctuation relationship of multivariate time series into a directed and weighted complex network. The directed and weighted complex network thus constructed inherits several properties of the series in its structure. Thereby, periodic series convert into regular networks, and random series convert into random networks. Moreover, chaotic time series convert into scale-free networks. It demonstrates that the MLCG algorithm permits us to distinguish, identify, and describe in detail various time series. Finally, we apply the MLCG algorithm to practical observations series, the monitoring time series from a compressor unit, and identify its dynamic characteristics. Empirical results demonstrate that the MLCG algorithm is suitable for analyzing the multivariable linkage fluctuation relationship in complex electromechanical system. This method can be used to detect specific or abnormal operation condition, which is relevant to condition identification and information quality control of complex electromechanical system in the process industry.展开更多
基金supported by the Natural Science Foundation of China under Grant Nos.71661001 and 71971190the project of Yunnan Key Laboratory of Smart City and Cyberspace Security under Grant No.202105AG070010。
文摘Micro triadic structure is an important motif and serves the building block of complex networks.In this paper,the authors define structure entropy for a social network and explain this concept by using the coded triads proposed by Davis and Leinhardt in 1972.The proposed structure entropy serves as a new macro-evolution index to measure the network’s stability at a given timestamp.Empirical analysis of real-world network structure entropy discloses rich information on the mechanism that yields given triadic motifs frequency distribution.This paper illustrates the intrinsic link between the micro dyadic/triadic motifs and network structure entropy.Importantly,the authors find that the high proportion of reciprocity and transitivity results in the emergence of hierarchy,order,and cooperation of online social networks.
基金supported by the National Natural Science Foundation of China(52004014)the Fundamental Research Funds for the Central Universities(ZY2406)the National Key Research&Development Program of China(2021YFB3301100).
文摘Refined risk prediction must be achieved to guarantee the safe and steady operation of chemical production processes.However,there is high nonlinearity and association coupling among massive,complicated multisource process data,resulting in a low accuracy of existing prediction technology.For that reason,a real-time risk prediction method for chemical processes based on the attention-based bidirectional long short-term memory(Attention-based Bi-LSTM)is proposed in this study.First,multisource process data,such as temperature,pressure,flow rate,and liquid level,are preprocessed for denoising.Data correlation is analyzed in time windows by setting time windows and moving step lengths to explore correlations,thus establishing a complex network model oriented to the chemical production process.Second,network structure entropy is introduced to reduce the dimensions of the multisource process data.Moreover,a 1D relative risk sequence is acquired by maxemin deviation standardization to judge whether the chemical process is in a steady state.Finally,an Attention-based Bi-LSTM algorithm is established by integrating the attention mechanism and the Bi-LSTM network to fit and train 1D relative risk sequences.In that way,the proposed algorithm achieves real-time prediction and intelligent perception of risk states during chemical production.A case study based on the Tennessee Eastman process(TEP)is conducted.The validity and reasonability of the proposed method are verified by analyzing distribution laws of relative risks under normal and fault conditions.Also,the proposed algorithm importantly improves the prediction accuracy of chemical process risks relative to that of existing prediction technologies.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190736)the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos.81701346 and 61603198)Qinglan Team of Universities in Jiangsu Province(Jiangsu Teacher Letter[2020]10 and Jiangsu Teacher Letter[2021]11).
文摘Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features,which cannot fully utilize the grayscale values containing important intrinsic information about brain structure.In this study,we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly.Normalized network structure entropy(NNSE)is then introduced to quantify the overall heterogeneities of these graphs.The results demonstrate a decrease in the NNSEs of gray matter with age.Compared with the middle-aged and the elderly,the larger values of the NNSE in the younger group may indicate more homogeneous network structures,smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion.In addition,the hub nodes of different adult age groups are primarily located in the precuneus,cingulate gyrus,superior temporal gyrus,inferior temporal gyrus,parahippocampal gyrus,insula,precentral gyrus and postcentral gyrus.Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging.
基金supported by the National Natural Science Foundation of China(Grant No.51375375)
文摘Abnormal conditions are hazardous in complex process systems, and the aim of condition recognition is to detect abnormal conditions and thus avoid severe accidents. The relationship of linkage fluctuation between monitoring variables can characterize the operation state of the system. In this study,we present a straightforward and fast computational method, the multivariable linkage coarse graining(MLCG) algorithm, which converts the linkage fluctuation relationship of multivariate time series into a directed and weighted complex network. The directed and weighted complex network thus constructed inherits several properties of the series in its structure. Thereby, periodic series convert into regular networks, and random series convert into random networks. Moreover, chaotic time series convert into scale-free networks. It demonstrates that the MLCG algorithm permits us to distinguish, identify, and describe in detail various time series. Finally, we apply the MLCG algorithm to practical observations series, the monitoring time series from a compressor unit, and identify its dynamic characteristics. Empirical results demonstrate that the MLCG algorithm is suitable for analyzing the multivariable linkage fluctuation relationship in complex electromechanical system. This method can be used to detect specific or abnormal operation condition, which is relevant to condition identification and information quality control of complex electromechanical system in the process industry.