This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage ve...This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage vectors. The new modulation approach shows superior performance for harmonic voltage and balancing control of neutral-point potential compared to the popular eight-stage centered SVPWM. It realizes suppression of inverter neutral-point potential variation by accurately modifying redundant factor of small vectors pairs, only requiring information of DC-link capacitor voltages and three-phase load currents. This is convenient to apply and is compatible of digital computer realization. Feasibility of the proposed control approach is verified by simulation and experimental results.展开更多
The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active swit...The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.展开更多
The presence of an integrator in a reference model of a rotor flux-based model reference adaptive system(RF-MRAS)and non-linearity of the inverter in the output voltage degrade the speed response of the sensorless ope...The presence of an integrator in a reference model of a rotor flux-based model reference adaptive system(RF-MRAS)and non-linearity of the inverter in the output voltage degrade the speed response of the sensorless operation of the electric drive system in terms of DC drift,initial value issues,and inaccurate voltage acquisition.To improve the speed response,a compensating voltage component is supplemented by an amending integrator.The compensating voltage is a coalition of drift and offset voltages,and reduces DC drift and initial value issues.During low-speed operation,inaccurate voltage acquisition distorts the stator voltage critically,and it becomes considerable when the stator voltage of the machine is low.Implementing a three-level neutral point clamped inverter in speed-sensorless decoupled control of an induction motor improves the performance of the drive with superior quality of inverter output voltage.Further,the performance of the induction motor drive is improved by replacing the proportional-integral(PI)controller in the adaption mechanism of RF-MRAS with an adaptive neuro-fuzzy inference system(ANFIS)controller.A prototype model of the three-level neutral point clamped inverter(3L-NPC)-fed induction motor drive is fabricated in a laboratory,and its performance for a RF-MRAS,modified RFMRAS,and modified RFMRAS using ANFIS are compared using different benchmark tests.展开更多
With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more serio...With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more seriously.To solve the above problem,three-level neutral point clamped(NPC)inverters have been widely used,but their development is greatly restricted by the defect of neutral point voltage imbalance.In this paper,an improved virtual space vector pulse width modulation(VSVPWM)was proposed.Firstly,the mathematical models of various space vectors were established,and the influence of various space vectors on neutral point voltage was analyzed.The sum of the vector current at the neutral point was zero and the voltage control at the neutral point was completed by.introducing the time offset into different switching times of the redundant small vector.This method was simple in design and avoided the redundant calculation of the traditional VSVPWM method and tedious switch sequence design.This balancing control strategy could greatly reduce the influence of virtual vectors on neutral point voltage and effectively control the low-frequency oscillation of neutral point voltage.The validity of the method was verified by establishing a matlab simulation model.展开更多
The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interl...The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.展开更多
In order to improve maximum power point tracking(MPPT) performance, a variable and adaptive perturb and observe(P&O)method with current predictive control is proposed. This is applied in three-phase threelevel neu...In order to improve maximum power point tracking(MPPT) performance, a variable and adaptive perturb and observe(P&O)method with current predictive control is proposed. This is applied in three-phase threelevel neutral-point clamped(NPC) photovoltaic(PV)generation systems. To control the active power and the reactive power independently,the decoupled power control combined with a space vector modulation block is adopted for three-phase NPC inverters in PV generation systems.To balance the neutral-point voltage of the three-phase NPC grid-connected inverter, a proportional and integral control is used by adj usting the dwell time of small voltage vectors. A three-phase NPC inverter rated at 12 kVA was established. The performance of the proposed method was tested and compared with the fixed perturbation MPPT algorithm under different conditions. Experimental results confirm the feasibility and advantages of the proposed method.展开更多
针对三相LCL并网逆三电平中点钳位(Neutral Point Clamped,NPC)逆变器中有限集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)计算量大和控制速度慢导致NPC逆变器性能变差的问题,设计了一种快速模型预测控制方法...针对三相LCL并网逆三电平中点钳位(Neutral Point Clamped,NPC)逆变器中有限集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)计算量大和控制速度慢导致NPC逆变器性能变差的问题,设计了一种快速模型预测控制方法。通过改变快速模型预测控制中参考电流电角度控制逆变器输出电流的相位,实现入网电流与电网同步;通过在冗余短矢量中选择合适的短矢量,实现直流侧中点电压平衡,减少计算量;通过缩小计算扇区,使快速模型预测控制仅在当前最优输出电压矢量附近进行寻优计算,进一步减少计算量。在MATLAB/SIMULINK中搭建了三相LCL并网NPC逆变器仿真模型,仿真结果验证了上述控制方法的快速性和可行性,运算速度提高了18.31%,入网电流总谐波失真(Total Harmonic Distortion,THD)值减少了2.38%。展开更多
针对光伏发电系统对非隔离逆变电路的需求,提出构成一类中点钳位非隔离全桥光伏并网逆变器的2种基本开关单元:中点钳位正单元(positive-neutral point clamped cell,P-NPCC)和中点钳位负单元(negative-neutral point clampedc ell,N-NP...针对光伏发电系统对非隔离逆变电路的需求,提出构成一类中点钳位非隔离全桥光伏并网逆变器的2种基本开关单元:中点钳位正单元(positive-neutral point clamped cell,P-NPCC)和中点钳位负单元(negative-neutral point clampedc ell,N-NPCC)。提出由2种基本单元构造中点钳位全桥逆变器拓扑的生成机理和推演方法,按照该方法可以得到现有的中点钳位非隔离全桥光伏并网逆变器拓扑,如oH5、FB-DCBP以及一族新的中点钳位非隔离全桥并网逆变器拓扑。以所提PN-NPC拓扑为例详细分析了其工作原理,并实验比较了PN-NPC和Heric拓扑的变换效率和共模特性。所提拓扑的共模电压为恒定值,且其变换效率和共模特性均优于Heric拓扑。展开更多
文摘This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage vectors. The new modulation approach shows superior performance for harmonic voltage and balancing control of neutral-point potential compared to the popular eight-stage centered SVPWM. It realizes suppression of inverter neutral-point potential variation by accurately modifying redundant factor of small vectors pairs, only requiring information of DC-link capacitor voltages and three-phase load currents. This is convenient to apply and is compatible of digital computer realization. Feasibility of the proposed control approach is verified by simulation and experimental results.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB4201602)the National Natural Science Foundation of China(Grant No.52002409).
文摘The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.
文摘The presence of an integrator in a reference model of a rotor flux-based model reference adaptive system(RF-MRAS)and non-linearity of the inverter in the output voltage degrade the speed response of the sensorless operation of the electric drive system in terms of DC drift,initial value issues,and inaccurate voltage acquisition.To improve the speed response,a compensating voltage component is supplemented by an amending integrator.The compensating voltage is a coalition of drift and offset voltages,and reduces DC drift and initial value issues.During low-speed operation,inaccurate voltage acquisition distorts the stator voltage critically,and it becomes considerable when the stator voltage of the machine is low.Implementing a three-level neutral point clamped inverter in speed-sensorless decoupled control of an induction motor improves the performance of the drive with superior quality of inverter output voltage.Further,the performance of the induction motor drive is improved by replacing the proportional-integral(PI)controller in the adaption mechanism of RF-MRAS with an adaptive neuro-fuzzy inference system(ANFIS)controller.A prototype model of the three-level neutral point clamped inverter(3L-NPC)-fed induction motor drive is fabricated in a laboratory,and its performance for a RF-MRAS,modified RFMRAS,and modified RFMRAS using ANFIS are compared using different benchmark tests.
基金Supported by Application Technology Research and Development of Harbin City(2017RAXXJ075)。
文摘With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more seriously.To solve the above problem,three-level neutral point clamped(NPC)inverters have been widely used,but their development is greatly restricted by the defect of neutral point voltage imbalance.In this paper,an improved virtual space vector pulse width modulation(VSVPWM)was proposed.Firstly,the mathematical models of various space vectors were established,and the influence of various space vectors on neutral point voltage was analyzed.The sum of the vector current at the neutral point was zero and the voltage control at the neutral point was completed by.introducing the time offset into different switching times of the redundant small vector.This method was simple in design and avoided the redundant calculation of the traditional VSVPWM method and tedious switch sequence design.This balancing control strategy could greatly reduce the influence of virtual vectors on neutral point voltage and effectively control the low-frequency oscillation of neutral point voltage.The validity of the method was verified by establishing a matlab simulation model.
基金supported by the National Natural Science Foundation of China(Grant No.51977046)Wuxi University Research Start-up Fund for Introduced Talent(2022r021).
文摘The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.
基金supported in part by the National Young Natural Science Foundation of China (No. 51407124)in part by China Postdoctoral Science Foundation (No. 2015M581857)in part by Suzhou prospective applied research project (No. SYG201640)
文摘In order to improve maximum power point tracking(MPPT) performance, a variable and adaptive perturb and observe(P&O)method with current predictive control is proposed. This is applied in three-phase threelevel neutral-point clamped(NPC) photovoltaic(PV)generation systems. To control the active power and the reactive power independently,the decoupled power control combined with a space vector modulation block is adopted for three-phase NPC inverters in PV generation systems.To balance the neutral-point voltage of the three-phase NPC grid-connected inverter, a proportional and integral control is used by adj usting the dwell time of small voltage vectors. A three-phase NPC inverter rated at 12 kVA was established. The performance of the proposed method was tested and compared with the fixed perturbation MPPT algorithm under different conditions. Experimental results confirm the feasibility and advantages of the proposed method.
文摘针对三相LCL并网逆三电平中点钳位(Neutral Point Clamped,NPC)逆变器中有限集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)计算量大和控制速度慢导致NPC逆变器性能变差的问题,设计了一种快速模型预测控制方法。通过改变快速模型预测控制中参考电流电角度控制逆变器输出电流的相位,实现入网电流与电网同步;通过在冗余短矢量中选择合适的短矢量,实现直流侧中点电压平衡,减少计算量;通过缩小计算扇区,使快速模型预测控制仅在当前最优输出电压矢量附近进行寻优计算,进一步减少计算量。在MATLAB/SIMULINK中搭建了三相LCL并网NPC逆变器仿真模型,仿真结果验证了上述控制方法的快速性和可行性,运算速度提高了18.31%,入网电流总谐波失真(Total Harmonic Distortion,THD)值减少了2.38%。
文摘针对光伏发电系统对非隔离逆变电路的需求,提出构成一类中点钳位非隔离全桥光伏并网逆变器的2种基本开关单元:中点钳位正单元(positive-neutral point clamped cell,P-NPCC)和中点钳位负单元(negative-neutral point clampedc ell,N-NPCC)。提出由2种基本单元构造中点钳位全桥逆变器拓扑的生成机理和推演方法,按照该方法可以得到现有的中点钳位非隔离全桥光伏并网逆变器拓扑,如oH5、FB-DCBP以及一族新的中点钳位非隔离全桥并网逆变器拓扑。以所提PN-NPC拓扑为例详细分析了其工作原理,并实验比较了PN-NPC和Heric拓扑的变换效率和共模特性。所提拓扑的共模电压为恒定值,且其变换效率和共模特性均优于Heric拓扑。