期刊文献+
共找到56,482篇文章
< 1 2 250 >
每页显示 20 50 100
Recent advances in nickel-based catalysts in eCO_(2)RR for carbon neutrality
1
作者 Weikang Peng Fengfeng Li +6 位作者 Shuyi Kong Chenxi Guo Haotian Wu Jiacheng Wang Yi Shen Xianguang Meng Mingxi Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期61-91,共31页
The excessive use of nonrenewable energy has brought about serious greenhouse effect.Converting CO_(2) into high-value-added chemicals is undoubtedly the best choice to solve energy problems.Due to the excellent cost-... The excessive use of nonrenewable energy has brought about serious greenhouse effect.Converting CO_(2) into high-value-added chemicals is undoubtedly the best choice to solve energy problems.Due to the excellent cost-effectiveness and dramatic catalytic performance,nickel-based catalysts have been considered as the most promising candidates for the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR).In this work,the electrocatalytic reduction mechanism of CO_(2) over Ni-based materials is reviewed.The strategies to improve the eCO_(2)RR performance are emphasized.Moreover,the research on Ni-based materials for syngas generation is briefly summarized.Finally,the prospects of nickel-based materials in the eCO_(2)RR are provided with the hope of improving transition-metal-based electrocatalysts for eCO_(2)RR in the future. 展开更多
关键词 carbon energy carbon neutrality CO_(2)reduction ELECTROCATALYSIS nickel-based materials
在线阅读 下载PDF
Effects of sol-gel method and lanthanum addition on catalytic performances of nickel-based catalysts for methane reforming with carbon dioxide 被引量:4
2
作者 黎先财 胡全红 +2 位作者 杨沂凤 陈娟荣 赖志华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第6期864-868,共5页
The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction per... The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal. 展开更多
关键词 sol-gel method nickel-based catalyst REFORMING catalytic performance rare earths
在线阅读 下载PDF
Glow Discharge Plasma-Assisted Preparation of Nickel-Based Catalyst for Carbon Dioxide Reforming of Methane
3
作者 Fang Guo Wei Chu +1 位作者 Jun-qiang Xu Lin Zhong 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第5期481-486,共6页
A plasma-assisted method was employed to prepare Ni/γ-All2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those ... A plasma-assisted method was employed to prepare Ni/γ-All2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those of the conventional calcination catalyst. To achieve the same CH4 conversion, the conventional catalyst needed higher reaction temperature, about 50 ℃ higher than that of the N2 plasma-treated catalyst. After the evaluation test, the deactivation rate of the novel catalyst was 1.7%, compared with 15.2% for the conventional catalyst. Different from the characterization results of the calcined catalyst, a smaller average pore diameter and a higher specific surface area were obtained for the plasma-treated catalyst. The variations of the reduction peak temperatures and areas indicated that the catalyst reducibility was promoted by plasma assistance. The dispersion of nickel was also remarkably improved, which was helpful for controlling the ensemble size of metal atoms on the catalyst surface. The modification effect of plasma- assisted preparation on the surface property of alumina supported catalyst was speculated to account for the concentration increase of absorbed CO2. An enhancement of CO2 adsorption was propitious to the inhibition of carbon formation. The coke amount deposited on plasma treated catalyst was much smaller than that on the conventional catalyst. 展开更多
关键词 nickel-based catalyst PLASMA CO2 reforming of CH4 COKE Adsorption of CO2
在线阅读 下载PDF
Methane Decomposition into Carbon Fibers over Coprecipitated Nickel-Based Catalysts
4
作者 YanJu FengyiLi RenzhongWei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第2期101-106,共6页
Decomposition of methane in the presence of coprecipitated nickel-basedcatalysts to produce carbon fibers was investigated. The reaction was studied in the temperaturerange of 773 K to 1073 K. At 1023 K, the catalytic... Decomposition of methane in the presence of coprecipitated nickel-basedcatalysts to produce carbon fibers was investigated. The reaction was studied in the temperaturerange of 773 K to 1073 K. At 1023 K, the catalytic activities of three catalysts kept high at theinitial period and then decreased with the reaction time. The lifetimes of Ni-Cu-Al and Ni-La-Alcatalysts are longer than that of Ni-Al catalyst. With three catalysts, the yield of carbon fiberswas very low at 773 K. The yield of carbon fibers for Ni-La-Al catalyst was more than those forNi-Al and Ni-Cu-Al catalysts. For Ni-La-Al catalyst, the elevation of temperature from 873 K up to1073 K led gradually to an increase in the yield of carbon fibers. XRD studies on the Ni-La-Alcatalyst indicate that La_2NiO_4 was formed. The formation of La_2NiO_4 is responsible for theincrease in the catalytic lifetime and the yield of carbon fibers synthesized on Ni-La-Al at773-1073 K. Carbon fibers synthesized on Ni-Al catalyst are thin, long carbon nanotubes. There arebamboo-shaped carbon fibers synthesized on Ni-Cu-Al catalyst. Carbon fibers synthesized on Ni-La-Alcatalyst have large hollow core, thin wall and good graphitization. 展开更多
关键词 methane decomposition carbon fibers nickel-based catalyst
在线阅读 下载PDF
CO_x-Free Hydrogen and Carbon Nanofibers Produced from Direct Decomposition of Methane on Nickel-Based Catalysts 被引量:2
5
作者 Siang-Piao Chai Sharif Hussein Sharif Zein Abdul Rahman Mohamed 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期253-258,共6页
Direct decomposition of methane was carried out using a fixed-bed reactor at 700 ℃ for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2 catalysts (where M=AgO, CoO, ... Direct decomposition of methane was carried out using a fixed-bed reactor at 700 ℃ for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2 catalysts (where M=AgO, CoO, CuO, FeO, MnOx and MoO) in methane decomposition was investigated. The experimental results indicate that among the tested catalysts, NiO/SiO2 promoted with CuO give the highest hydrogen yield. In addition, the examination of the most suitable catalyst support, including Al2O3, CeO2, La2O3, SiO2, and TiO2, shows that the decomposition of methane over NiO-CuO favors SiOx support. Furthermore, the optimum ratio of NiO to CuO on SiO2 support for methane decomposition was determined. The experimental results show that the optimum weight ratio of NiO to CuO fell at 8:2 (w/w) since the highest yield of hydrogen was obtained over this catalyst. 展开更多
关键词 methane decomposition HYDROGEN carbon nanofibers supported catalyst
在线阅读 下载PDF
Highly Branched Polyethylene with Low Molecular Weight Prepared through Ethylene Polymerization on Nickel-Based Catalyst 被引量:1
6
作者 Yi Jianjun Huang Xugeng Jing Zhenhua (Research Institute of Petroleum Processing, Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2005年第1期57-61,共5页
Nickel-based catalyst [N,N]NiBr2, in which [N,N] stands for N-(2,6-diisopropylphenyl)pyridine-2-carboxaldimine, shows high activity for ethylene polymerization in the presence of organoaluminum compounds under high et... Nickel-based catalyst [N,N]NiBr2, in which [N,N] stands for N-(2,6-diisopropylphenyl)pyridine-2-carboxaldimine, shows high activity for ethylene polymerization in the presence of organoaluminum compounds under high ethylene pressure to yield polyethylene characteristic of low molecular weight and highly branched chains. Toluene as the solvent is more in favor of catalyst activity, higher molecular weight and branched chains in polyethylene structure as compared to hexane solvent. 展开更多
关键词 Transition metal catalyst POLYETHYLENE low molecular weight
在线阅读 下载PDF
Influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction
7
作者 M.A.Goula N.D.Charisiou +1 位作者 K.N.Papageridis G.Siakavelas 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1949-1965,共17页
The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were ... The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were synthesized,with nickel loading of 8 wt%,using the incipient wetness,wet impregnation,and modified equilibrium deposition filtration methods.The catalysts' surface and bulk properties were determined by inductively coupled plasma(ICP),N2 adsorption-desorption isotherms(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and temperature-programmed reduction(TPR).Used catalysts were characterized by techniques such as elemental analysis and SEM in order to determine the level of carbon that was deposited and catalyst morphology.The results indicated that the synthesis method affected the textural,structural and surface properties of the catalysts,differentiating the dispersion and the kind of nickel species on alumina's surface.The formation of nickel aluminate phases was confirmed by the XRD and TPR analysis and the β-peak of the Ni/Al-edf catalyst was higher than in the other two catalysts,indicating that the nickel aluminate species of this catalyst were more reducible.Both Ni/Al-wet and Ni/Al-edf catalysts showed increasing CO2 selectivities and approximately constant CO selectivities for temperatures above 550℃,indicating that these catalysts successfully catalyze the water gas shift reaction.It was also confirmed that the Ni/Al-edf catalyst had the highest values for glycerol to gaseous products conversion,hydrogen yield,allyl alcohol,acetaldehyde,and acetic acid selectivities at 650℃ and the lowest carbon deposition of the catalysts tested.The correlation of the catalysts' structural properties,dispersion and reducibility with catalytic performance reveals that the EDF method can provide catalysts with higher specific surface area and active phase's dispersion,that are easier to reduce,more active and selective to hydrogen production,and more resistant to carbon deposition. 展开更多
关键词 GLYCEROL HYDROGEN Steam reforming Supported nickel catalyst catalyst prep aration
在线阅读 下载PDF
Efficient epoxidation of propylene over non-noble nickel-based catalyst promoted by alkali metals
8
作者 Wenqian Li Wanting Li +8 位作者 Xinxin Cao Longfei Chen Yibo Qin Yanfeng Zhu Yanfei Zhang Gai Miao Lingzhao Kong Jiong Li Xinqing Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第11期3697-3705,共9页
The application of non-noble metal catalysts in the catalytic direct gas-phase epoxidation of propylene with H2and O2to produce propylene oxide is valuable and challenging. The introduction of alkali metal promoters i... The application of non-noble metal catalysts in the catalytic direct gas-phase epoxidation of propylene with H2and O2to produce propylene oxide is valuable and challenging. The introduction of alkali metal promoters is one of the effective methods to improve the catalytic activity of catalysts. Herein, a series of alkali metal(Li, Na, K, Rb, and Cs)-promoted Ni/TS-1 catalysts were prepared to deeply understand the effect of alkali metals on the structure-activity relationship for gas-phase epoxidation of propylene. Among them, the Na-Ni/TS-1 catalyst exhibits the highest catalytic activity(propylene conversion of 7.35% and PO formation rate of 157.9 g h^(-1)kg_(cat)^(-1)) and the best stability(long-term stability exceeding 140 h at 200 ℃). X-ray absorption and photoelectron spectroscopy revealed that the electronic structure of Ni can be tuned by the addition of alkali metal promoters.NH3-TPD-MS, CO_(2)-TPD-MS, and C_(3)H_(6)-TPD-MS results indicate that the acidity of the catalyst can also be adjusted by the introduction of alkali metal, whereas the Na-Ni/TS-1 catalyst exhibits the strongest C_(3)H_(6) adsorption capacity. Thus, the suitable acid-base properties, unique electronic properties of Ni species, and the strongest propylene adsorption capacity resulted in improved propylene gas-phase epoxidation activity of Na-Ni/TS-1 catalyst. This study not only provides a new strategy for the practical application of nickel-based catalysts in the gas-phase epoxidation of propylene but also provides insights into the promoting effect of alkali metals. 展开更多
关键词 PROPYLENE EPOXIDATION Ni/TS-1 catalyst alkali metal precipitating agents
原文传递
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal 被引量:1
9
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
在线阅读 下载PDF
Cracking on a nickel-based superalloy fabricated by direct energy deposition
10
作者 Xue Zhang Ya-hang Mu +4 位作者 Liang Ma Jing-jing Liang Yi-zhou Zhou Xiao-feng Sun Jin-guo Li 《China Foundry》 SCIE EI CAS CSCD 2024年第4期311-318,共8页
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s... Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys. 展开更多
关键词 LOCATION cracks direct energy deposition nickel-based superalloys
在线阅读 下载PDF
Steam reforming of toluene as a tar model compound with modified nickel-based catalyst 被引量:2
11
作者 Omeralfaroug Khalifa Mingxin Xu +3 位作者 Rongjun Zhang Tahir Iqbal Mingfeng Li Qiang Lu 《Frontiers in Energy》 SCIE CSCD 2022年第3期492-501,共10页
Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a... Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a major challenge. In this paper, a modified Ni-based Ni-Co/Al2O3-CaO (Ni-Co/AC) catalyst and a conventional Ni/Al2O3 (Ni/A) catalyst were prepared and tested for tar catalytic removal in which toluene was selected as the model component. Experiments were conducted to reveal the influences of the reaction temperature and the ratio between steam to carbon on the toluene conversion and the hydrogen yield. The physicochemical properties of the modified Ni-based catalyst were determined by a series of characterization methods. The results indicated that the Ni-Co alloy was determined over the Ni-Co/AC catalyst. The doping of CaO and the presence of Ni-Co alloy promoted the performance of toluene catalytic dissociation over Ni-Co/AC catalyst compared with that over Ni/A catalyst. After testing in steam for 40 h, the carbon conversion over Ni-Co/AC maintained above 86% and its resistance to carbon deposition was superior to Ni/A catalyst. 展开更多
关键词 catalytic steam reforming tar model compound Ni-based catalyst carbon resistance
原文传递
Catalytic Performance of Carbon Smoke over Ag-LSCF Composite Catalysts
12
作者 GUO Guanlun HAN Ming +3 位作者 LU Shaomin YU Jing JU Hongling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期30-34,共5页
To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha... To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity. 展开更多
关键词 metallic composites carbon smoke oxidation perovskite catalyst SOOT
在线阅读 下载PDF
Bimetallic Single‑Atom Catalysts for Water Splitting
13
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
在线阅读 下载PDF
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
14
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 catalyst-support interaction Supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
在线阅读 下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
15
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling Oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
16
作者 Si Chen Fang Huang +5 位作者 Lijie Mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) High metal loading Oxidase catalysis
在线阅读 下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation
17
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
18
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Direct Decomposition of NO over Cobalt-based Perovskite Catalyst La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)under Microwave Irradiation
19
作者 WANG Hao ZHOU Shijia +2 位作者 WANG Qiulong ZHAO Shuohan DU Jingxin 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期353-358,共6页
We presented the preparation and analysis of La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)catalysts,supported on microwave-absorbing ceramic carriers,using the sol-gel method.We systematically investigated the effects of various re... We presented the preparation and analysis of La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)catalysts,supported on microwave-absorbing ceramic carriers,using the sol-gel method.We systematically investigated the effects of various reaction conditions under microwave irradiation(0-50 W).These conditions included reaction temperatures(300-600℃),oxygen concentrations(0-6%),and varying K^(+)doping levels on the catalysts'activity.The crystalline phase,microstructure,and the catalytic activity of the catalyst were analyzed by XRD,TEM,H_2-TPR,and O_(2)-TPD.The experimental results reveal that La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)catalysts consistently form homogeneous perovskite nanoparticles across different doping levels.The NO decomposition efficiency on these catalysts initially increases and then decreases with variations in doping amount,temperature,and microwave power.Additionally,an increase in oxygen concentration positively influences NO conversion rates.The optimal performance is observed with La_(0.7)K_(0.3)CoO_(3)catalyst under conditions of x=0.3,400℃,10 W microwave power,and 4%oxygen concentration,achieving a peak NO conversion rate of La_(0.7)K_(0.3)CoO_(3)catalyst is 93.1%. 展开更多
关键词 microwave catalysis direct decomposition of NO perovskite catalyst
在线阅读 下载PDF
Research progress of catalysts for direct coal liquefaction
20
作者 Wei Song Penggao Liu +4 位作者 Xinyue Chen Ting Wang Chunrong He Rui Hao Kaiyu Liu 《Journal of Energy Chemistry》 2025年第1期481-497,共17页
Coal direct liquefaction technology is a crucial contemporary coal chemical technology for efficient and clean use of coal resources. The development of direct coal liquefaction technology and the promotion of alterna... Coal direct liquefaction technology is a crucial contemporary coal chemical technology for efficient and clean use of coal resources. The development of direct coal liquefaction technology and the promotion of alternative energy sources are important measures to guarantee energy security and economic security. However, several challenges need to be addressed, including low conversion rate, inadequate oil yield, significant coking, demanding reaction conditions, and high energy consumption. Extensive research has been conducted on these issues, but further exploration is required in certain aspects such as pyrolysis of macromolecules during the liquefaction process, hydrogen activation, catalysts' performance and stability, solvent hydrogenation, as well as interactions between free radicals to understand their mechanisms better. This paper presents a comprehensive analysis of the design strategy for efficient catalysts in coal liquefaction, encompassing the mechanism of coal liquefaction, catalyst construction,and enhancement of catalytic conversion efficiency. It serves as a comprehensive guide for further research endeavors. Firstly, it systematically summarizes the conversion mechanism of direct coal liquefaction, provides detailed descriptions of various catalyst design strategies, and especially outlines the catalytic mechanism. Furthermore, it addresses the challenges and prospects associated with constructing efficient catalysts for direct coal liquefaction based on an understanding of their action mechanisms. 展开更多
关键词 Direct coal liquefaction catalystS Mechanismof action Solvent hydrogenation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部