The change and control of nitrogen content in molten steel was investigated through the production process of "LDBAr-LF-RH-CC". Results show that nitrogen content reduces gradually in converter-steelmaking s...The change and control of nitrogen content in molten steel was investigated through the production process of "LDBAr-LF-RH-CC". Results show that nitrogen content reduces gradually in converter-steelmaking stage, rises rapidly from the end of converter process to the end of argon station process, continues to increase in ladle furnace process, and decreases slightly in RH refining stage. Since nitrogen is removed mainly by BOF steelmaking and vacuum refining operations, nitrogen in molten steel should be removed as much as possible in these two operations. However, nitrogen uptake should be minimized in other operations of molten steel production process.展开更多
通过试验研究了150 t顶底复吹转炉—150 t LF炉—薄板坯连铸连轧流程钢液w(N)的变化。研究发现:转炉出钢、吹氩操作、LF炉精炼和连铸过程均可能增氮,自转炉出钢至LF炉精炼开始过程和钢水从大包进入中间包过程增氮最为严重,平均增氮都接...通过试验研究了150 t顶底复吹转炉—150 t LF炉—薄板坯连铸连轧流程钢液w(N)的变化。研究发现:转炉出钢、吹氩操作、LF炉精炼和连铸过程均可能增氮,自转炉出钢至LF炉精炼开始过程和钢水从大包进入中间包过程增氮最为严重,平均增氮都接近20×10-6。对影响钢液增氮的一些因素进行了讨论,提出了相应的改进措施。展开更多
文摘The change and control of nitrogen content in molten steel was investigated through the production process of "LDBAr-LF-RH-CC". Results show that nitrogen content reduces gradually in converter-steelmaking stage, rises rapidly from the end of converter process to the end of argon station process, continues to increase in ladle furnace process, and decreases slightly in RH refining stage. Since nitrogen is removed mainly by BOF steelmaking and vacuum refining operations, nitrogen in molten steel should be removed as much as possible in these two operations. However, nitrogen uptake should be minimized in other operations of molten steel production process.
文摘通过试验研究了150 t顶底复吹转炉—150 t LF炉—薄板坯连铸连轧流程钢液w(N)的变化。研究发现:转炉出钢、吹氩操作、LF炉精炼和连铸过程均可能增氮,自转炉出钢至LF炉精炼开始过程和钢水从大包进入中间包过程增氮最为严重,平均增氮都接近20×10-6。对影响钢液增氮的一些因素进行了讨论,提出了相应的改进措施。