In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor...In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.展开更多
In Linear Programming (LP) applications, unexpected non binding constraints are among the “why” questions that can cause a great deal of debate. That is, those constraints that are expected to have been active based...In Linear Programming (LP) applications, unexpected non binding constraints are among the “why” questions that can cause a great deal of debate. That is, those constraints that are expected to have been active based on price signals, market drivers or manager’s experiences. In such situations, users have to solve many auxiliary LP problems in order to grasp the underlying technical reasons. This practice, however, is cumbersome and time-consuming in large scale industrial models. This paper suggests a simple solution-assisted methodology, based on known concepts in LP, to detect a sub set of active constraints that have the most preventing impact on any non binding constraint at the optimal solution. The approach is based on the marginal rate of substitutions that are available in the final simplex tableau. A numerical example followed by a real-type case study is provided for illustration.展开更多
In this paper,quadratic 0-1 programming problem (I) is considered, in terms of its features quadratic 0-1 programming problem is solved by linear approxity heurstic algrothm and a developed tabu search ahgrothm .
In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above...In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above quadratic0-1 programming and its relaxed problem, k-coloring problem is converted intoa class of (continuous) nonconvex quadratic programs, and several theoreticresults are also introduced. Thirdly, linear programming approximate algorithmis quoted and verified for this class of nonconvex quadratic programs. Finally,examining problems which are used to test the algorithm are constructed andsufficient computation experiments are reported.展开更多
In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb...In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.展开更多
In this paper , through the discrim ination of Farey sequence in the forced Brusselator withweak coupling , it is proved that there is a topological translation fro m a nonlinear differen tial system ( limit cycle)...In this paper , through the discrim ination of Farey sequence in the forced Brusselator withweak coupling , it is proved that there is a topological translation fro m a nonlinear differen tial system ( limit cycle) to the circle m ap .展开更多
A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle ...A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.展开更多
Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems a...Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.展开更多
Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new ...Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new century. In order to get a deep insight into this field, some notes on the direct searches for non-smooth optimization problems are made. The global convergence vs. local convergence and their influences on expected solutions for simulation-based stochastic optimization are pointed out. The sufficient and simple decrease criteria for step acceptance are analyzed, and why simple decrease is enough for globalization in direct searches is identified. The reason to introduce the positive spanning set and its usage in direct searches is explained. Other topics such as the generalization of direct searches to bound, linear and non-linear constraints are also briefly discussed.展开更多
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established ...An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.展开更多
终端变电站在城市110 k V电网中的广泛采用使得对220 k V城市电网的供电能力进行以典型网架结构为单位的解耦分析成为可能。针对220 k V城市电网中的典型网架结构—自愈式环网的供电能力问题,提出一种考虑电力系统N-1静态安全约束的非...终端变电站在城市110 k V电网中的广泛采用使得对220 k V城市电网的供电能力进行以典型网架结构为单位的解耦分析成为可能。针对220 k V城市电网中的典型网架结构—自愈式环网的供电能力问题,提出一种考虑电力系统N-1静态安全约束的非线性优化模型,并采用改进差分进化算法进行寻优;寻优过程中,使用内嵌的牛顿—拉夫逊法进行预想事故集的潮流校核。对某市220 k V自愈式环网进行算例分析的结果表明,所提模型和算法能够准确地求解其在给定条件下的最大供电能力,同时能指出受限的约束条件,具有较强的有效性和实用性。展开更多
文摘In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.
文摘In Linear Programming (LP) applications, unexpected non binding constraints are among the “why” questions that can cause a great deal of debate. That is, those constraints that are expected to have been active based on price signals, market drivers or manager’s experiences. In such situations, users have to solve many auxiliary LP problems in order to grasp the underlying technical reasons. This practice, however, is cumbersome and time-consuming in large scale industrial models. This paper suggests a simple solution-assisted methodology, based on known concepts in LP, to detect a sub set of active constraints that have the most preventing impact on any non binding constraint at the optimal solution. The approach is based on the marginal rate of substitutions that are available in the final simplex tableau. A numerical example followed by a real-type case study is provided for illustration.
文摘In this paper,quadratic 0-1 programming problem (I) is considered, in terms of its features quadratic 0-1 programming problem is solved by linear approxity heurstic algrothm and a developed tabu search ahgrothm .
文摘In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above quadratic0-1 programming and its relaxed problem, k-coloring problem is converted intoa class of (continuous) nonconvex quadratic programs, and several theoreticresults are also introduced. Thirdly, linear programming approximate algorithmis quoted and verified for this class of nonconvex quadratic programs. Finally,examining problems which are used to test the algorithm are constructed andsufficient computation experiments are reported.
文摘In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.
文摘In this paper , through the discrim ination of Farey sequence in the forced Brusselator withweak coupling , it is proved that there is a topological translation fro m a nonlinear differen tial system ( limit cycle) to the circle m ap .
文摘A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
基金Project supported by the National Natural Science Foundation oChina (Grant os.79970107 and 10271073)
文摘Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.
基金supported by the Key Foundation of Southwest University for Nationalities(09NZD001).
文摘Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new century. In order to get a deep insight into this field, some notes on the direct searches for non-smooth optimization problems are made. The global convergence vs. local convergence and their influences on expected solutions for simulation-based stochastic optimization are pointed out. The sufficient and simple decrease criteria for step acceptance are analyzed, and why simple decrease is enough for globalization in direct searches is identified. The reason to introduce the positive spanning set and its usage in direct searches is explained. Other topics such as the generalization of direct searches to bound, linear and non-linear constraints are also briefly discussed.
文摘An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.
文摘终端变电站在城市110 k V电网中的广泛采用使得对220 k V城市电网的供电能力进行以典型网架结构为单位的解耦分析成为可能。针对220 k V城市电网中的典型网架结构—自愈式环网的供电能力问题,提出一种考虑电力系统N-1静态安全约束的非线性优化模型,并采用改进差分进化算法进行寻优;寻优过程中,使用内嵌的牛顿—拉夫逊法进行预想事故集的潮流校核。对某市220 k V自愈式环网进行算例分析的结果表明,所提模型和算法能够准确地求解其在给定条件下的最大供电能力,同时能指出受限的约束条件,具有较强的有效性和实用性。