Through an example of a main transformer switch-in with load during the reverse transmission of a 750 kV power plan,the paper introduces the basic principle of transformer switch-in with load.EMTPE program that is use...Through an example of a main transformer switch-in with load during the reverse transmission of a 750 kV power plan,the paper introduces the basic principle of transformer switch-in with load.EMTPE program that is used to establish a calculation model,at the same time mainly considers the excitation characteristics of the transformer,the transient model of the circuit breaker,and the model of high voltage transformer,and calculated the inrush current with transformer switch-in with load in this plan.During system debugging in the plan,the two sets of main transformers passed the closing and opening test,and the data of inrush current in the test are recorded and analyzed.The simulation calculation and measured data show that the results are consistent.The simulation calculation also shows that it is not recommended to perform on-load closing of the transformer except for special circumstances,because of the influence of hysteresis characteristic when the transformer was switched in with load or the terminal voltage of the transformer resumed normal level from a low one after an external near-end fault was cleared,which various transformer differential protection using the characteristics of inrush to implement block scheme may mal-operate.展开更多
The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-fail...The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-failure indiceso"warning about entrance into a critical stage,that of impending fracture,is explored.The acoustic activity is quantified in terms of the normalized number of acoustic hits,their average rate of production and their cumulative energy,and,the cumulative counts and their average rate of change.The electric activity is studied in terms of the pressure stimulated currents and the electric charge released.The analysis revealed that the acoustic and electric activities are linearly correlated to each other,suggesting that they are different manifestations of the same damage mechanisms.In addition,Kaiser's effect,governing the acoustic activity,is found to govern,also,the electric activity.Moreover,it is concluded that entrance into the critical stage is safely predicted by means of a simple criterion,based on the evolution of the average rate of change of the normalized cumulative counts in the natural time domain.These predictions are almost identical with those of the criterion based on the "varianceo" and the "entropies" of the time series of acoustic events in this domain.展开更多
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on th...The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.展开更多
The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under th...The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs.展开更多
A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of dr...A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power展开更多
Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element me...Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element method able to account for fluid-structure interaction.The obtained results show that increasing the number of vehicles per unit length enhances the transverse vibrational displacements of the SFT cross sections.Under ultimate traffic load condition,one-way and two-way syntropic distributions can promote the dynamic responses of SFTs whereas two-way reverse distributions have the opposite effect.展开更多
The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of moti...The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.展开更多
<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes...<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">input fuzzy controllers, but because such controllers are expensive, there is </span><span style="font-family:Verdana;">economic interest in the relatively cheaper single-input controllers. A n</span><span style="font-family:Verdana;">on-</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter;while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.</span>展开更多
Using an irregularly oscillating tray and flume, a series of experiments are completed to evaluate bed-load sediment transport rate under irregular wave -current coexistent field. Testing conditions include three i...Using an irregularly oscillating tray and flume, a series of experiments are completed to evaluate bed-load sediment transport rate under irregular wave -current coexistent field. Testing conditions include three interaction angles 0', 45', 90' and two kinds of median sizes (0.38 and 1.10 mm). The results of transport rate show that the net sediment transport rate can be expressed approximately as the function of the maximum bottom shear stress of waves, mean shear stress of current and the grain size.展开更多
A dynamic response analysis in the frequency domain is presented for risers subjected to combined wave and current loading. Considering the effects of current, a modified wave spectrum is adopted to compute the linear...A dynamic response analysis in the frequency domain is presented for risers subjected to combined wave and current loading. Considering the effects of current, a modified wave spectrum is adopted to compute the linearized drag force. An additional drag force convolution term is added to the linearized drag force spectrum, therefore the error is reduced which arises from the truncation of higher order terms in the drag force auto-correlation function. An expression of linearized drag force spectrum is given taking the relative velocity into account. It is found that the additional term is a fold convolution integral. In this paper dynamic responses of risers are investigated, while the influence of floater motion on risers is considered. The results demonstrate that the accuracy of the present method reaches the degree required in time domain analysis.展开更多
The first decision we need to make in a structural load assessment is what approach should be applied, a linear approach or a non-linear one. The correct decision comes from understanding of the technology used in the...The first decision we need to make in a structural load assessment is what approach should be applied, a linear approach or a non-linear one. The correct decision comes from understanding of the technology used in the linear and non-linear approaches and also comes from the understanding of the problem to he analyzed. From engineering practice, it has been found that many non-linear effects can be taken into account in a linear model with appropriate approach. A study of hydrodynamic structural load on a stinger of a pipe-laying vessel is presented in this paper. The results of a non-linear analysis are compared to those of linear models with different approaches, and how the nonlinear effect can be involved in a linear model is discussed. The recommendations on how to estimate the non-linear effects in a linear structural load model is discussed.展开更多
In this paper, the distribution characteristics of the breaking wave current and suspended load transport in the surf zone are discussed in main. Based on the measured data of the waves, the form of breaking wave, the...In this paper, the distribution characteristics of the breaking wave current and suspended load transport in the surf zone are discussed in main. Based on the measured data of the waves, the form of breaking wave, the breaking wave current and the sediment concentration of suspended load in the offshore surf zone near Nouakchott, the Islamic Republic of Mauritania, the author has analized the law governing the distribution of longshore current and sediment concentration of suspended load by means of statistical method, and presented a calculation method for the longshore sediment transport in offshore surf zone.展开更多
This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable poly...This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable polystyrene is presented and taken as basis to propose energy absorption systems. Using a base structure, these systems are implemented by means of finite element modeling. A comparison of the damage caused to the structure in case of impact without implementing energy absorption system, and implementing energy absorption systems based on bistable structures, polystyrene foam and aluminum foam are shown here in. The results demonstrate the advantages of using energy absorption systems on structures under impact loads.展开更多
Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant ...Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests.展开更多
This paper considers the influence of changes of the transmission lines of permissible load current depending on conductor and ambient temperatures, climate conditions. The theoretical background of the allowable cond...This paper considers the influence of changes of the transmission lines of permissible load current depending on conductor and ambient temperatures, climate conditions. The theoretical background of the allowable conductor temperature as well as load current determination principles are proposed. On one hand, the principles are based on mechanical limitations; on the other hand, they are based on thermal limitations. The simulation tasks were based on specific data information of three existing overhead lines of Latvian power system as well as the planned 330 kV overhead line. Moreover, the special thermovision device was used for precious determination of conductor temperature of the existing transmission lines. The simulation results of the obtained data are reviewed in the paper.展开更多
文摘Through an example of a main transformer switch-in with load during the reverse transmission of a 750 kV power plan,the paper introduces the basic principle of transformer switch-in with load.EMTPE program that is used to establish a calculation model,at the same time mainly considers the excitation characteristics of the transformer,the transient model of the circuit breaker,and the model of high voltage transformer,and calculated the inrush current with transformer switch-in with load in this plan.During system debugging in the plan,the two sets of main transformers passed the closing and opening test,and the data of inrush current in the test are recorded and analyzed.The simulation calculation and measured data show that the results are consistent.The simulation calculation also shows that it is not recommended to perform on-load closing of the transformer except for special circumstances,because of the influence of hysteresis characteristic when the transformer was switched in with load or the terminal voltage of the transformer resumed normal level from a low one after an external near-end fault was cleared,which various transformer differential protection using the characteristics of inrush to implement block scheme may mal-operate.
文摘The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-failure indiceso"warning about entrance into a critical stage,that of impending fracture,is explored.The acoustic activity is quantified in terms of the normalized number of acoustic hits,their average rate of production and their cumulative energy,and,the cumulative counts and their average rate of change.The electric activity is studied in terms of the pressure stimulated currents and the electric charge released.The analysis revealed that the acoustic and electric activities are linearly correlated to each other,suggesting that they are different manifestations of the same damage mechanisms.In addition,Kaiser's effect,governing the acoustic activity,is found to govern,also,the electric activity.Moreover,it is concluded that entrance into the critical stage is safely predicted by means of a simple criterion,based on the evolution of the average rate of change of the normalized cumulative counts in the natural time domain.These predictions are almost identical with those of the criterion based on the "varianceo" and the "entropies" of the time series of acoustic events in this domain.
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
基金Project supported by the National Natural Science Foundation of China(Grant No.61371033)the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No.142027)+1 种基金the Sichuan Provincial Youth Science and Technology Fund,China(Grant Nos.2014JQ0015and 2013JQ0033)the Fundamental Research Funds for the Central Universities,China(Grant No.SWJTU11CX029)
文摘The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.
基金the State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(No.SKLCRSM22KF011)the National Natural Science Foundation of China(Nos.52130411,52104191,51974120,and 51904103)+1 种基金the Natural Science Foundation of Hunan Province(No.2021JJ40204)the Science and Technology Innovation Program of Hunan Province(No.2020RC3047).
文摘The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs.
基金Project supported by the National Natural Science Foundation of China (Grant No 10035020).
文摘A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power
基金supported by Chongqing Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0923).
文摘Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element method able to account for fluid-structure interaction.The obtained results show that increasing the number of vehicles per unit length enhances the transverse vibrational displacements of the SFT cross sections.Under ultimate traffic load condition,one-way and two-way syntropic distributions can promote the dynamic responses of SFTs whereas two-way reverse distributions have the opposite effect.
基金Natural Science Research Project of Education Department of Shaanxi Province,China(No.08JK394).
文摘The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.
文摘<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">input fuzzy controllers, but because such controllers are expensive, there is </span><span style="font-family:Verdana;">economic interest in the relatively cheaper single-input controllers. A n</span><span style="font-family:Verdana;">on-</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter;while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.</span>
基金the National Natural Science Foundation of China under contract No..59579014.
文摘Using an irregularly oscillating tray and flume, a series of experiments are completed to evaluate bed-load sediment transport rate under irregular wave -current coexistent field. Testing conditions include three interaction angles 0', 45', 90' and two kinds of median sizes (0.38 and 1.10 mm). The results of transport rate show that the net sediment transport rate can be expressed approximately as the function of the maximum bottom shear stress of waves, mean shear stress of current and the grain size.
文摘A dynamic response analysis in the frequency domain is presented for risers subjected to combined wave and current loading. Considering the effects of current, a modified wave spectrum is adopted to compute the linearized drag force. An additional drag force convolution term is added to the linearized drag force spectrum, therefore the error is reduced which arises from the truncation of higher order terms in the drag force auto-correlation function. An expression of linearized drag force spectrum is given taking the relative velocity into account. It is found that the additional term is a fold convolution integral. In this paper dynamic responses of risers are investigated, while the influence of floater motion on risers is considered. The results demonstrate that the accuracy of the present method reaches the degree required in time domain analysis.
文摘The first decision we need to make in a structural load assessment is what approach should be applied, a linear approach or a non-linear one. The correct decision comes from understanding of the technology used in the linear and non-linear approaches and also comes from the understanding of the problem to he analyzed. From engineering practice, it has been found that many non-linear effects can be taken into account in a linear model with appropriate approach. A study of hydrodynamic structural load on a stinger of a pipe-laying vessel is presented in this paper. The results of a non-linear analysis are compared to those of linear models with different approaches, and how the nonlinear effect can be involved in a linear model is discussed. The recommendations on how to estimate the non-linear effects in a linear structural load model is discussed.
文摘In this paper, the distribution characteristics of the breaking wave current and suspended load transport in the surf zone are discussed in main. Based on the measured data of the waves, the form of breaking wave, the breaking wave current and the sediment concentration of suspended load in the offshore surf zone near Nouakchott, the Islamic Republic of Mauritania, the author has analized the law governing the distribution of longshore current and sediment concentration of suspended load by means of statistical method, and presented a calculation method for the longshore sediment transport in offshore surf zone.
文摘This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable polystyrene is presented and taken as basis to propose energy absorption systems. Using a base structure, these systems are implemented by means of finite element modeling. A comparison of the damage caused to the structure in case of impact without implementing energy absorption system, and implementing energy absorption systems based on bistable structures, polystyrene foam and aluminum foam are shown here in. The results demonstrate the advantages of using energy absorption systems on structures under impact loads.
基金support of RSSB to this work via the project RSSB/COF-UOH-49 is greatly appreciated.The authors also acknowledge the support by FCT,through IDMEC,under LAETA,project UIDB/50022/2020.
文摘Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests.
文摘This paper considers the influence of changes of the transmission lines of permissible load current depending on conductor and ambient temperatures, climate conditions. The theoretical background of the allowable conductor temperature as well as load current determination principles are proposed. On one hand, the principles are based on mechanical limitations; on the other hand, they are based on thermal limitations. The simulation tasks were based on specific data information of three existing overhead lines of Latvian power system as well as the planned 330 kV overhead line. Moreover, the special thermovision device was used for precious determination of conductor temperature of the existing transmission lines. The simulation results of the obtained data are reviewed in the paper.