期刊文献+
共找到25,987篇文章
< 1 2 250 >
每页显示 20 50 100
Model’s parameter sensitivity assessment and their impact on Urban Densification using regression analysis
1
作者 Anasua Chakraborty Mitali Yeshwant Joshi +2 位作者 Ahmed Mustafa Mario Cools Jacques Teller 《Geography and Sustainability》 2025年第2期143-156,共14页
The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for... The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for modelling urban growth to closely reflects reality.Despite extensive research,ambiguity remains about how variations in these input variables influence urban densification.In this study,we conduct a global sensitivity analysis(SA)using a multinomial logistic regression(MNL)model to assess the model’s explanatory and predictive power.We examine the influence of global variables,including spatial resolution,neighborhood size,and density classes,under different input combinations at a provincial scale to understand their impact on densification.Additionally,we perform a stepwise regression to identify the significant explanatory variables that are important for understanding densification in the Brussels Metropolitan Area(BMA).Our results indicate that a finer spatial resolution of 50 m and 100 m,smaller neighborhood size of 5×5 and 3×3,and specific density classes—namely 3(non-built-up,low and high built-up)and 4(non-built-up,low,medium and high built-up)—optimally explain and predict urban densification.In line with the same,the stepwise regression reveals that models with a coarser resolution of 300 m lack significant variables,reflecting a lower explanatory power for densification.This approach aids in identifying optimal and significant global variables with higher explanatory power for understanding and predicting urban densification.Furthermore,these findings are reproducible in a global urban context,offering valuable insights for planners,modelers and geographers in managing future urban growth and minimizing modelling. 展开更多
关键词 Urban densification Sensitivity analysis Multinomial logistic regression Stepwise regression
在线阅读 下载PDF
A logistic-Lasso-regression-based seismic fragility analysis method for electrical equipment considering structural and seismic parameter uncertainty
2
作者 Cui Jiawei Che Ailan +1 位作者 Li Sheng Cheng Yongfeng 《Earthquake Engineering and Engineering Vibration》 2025年第1期169-186,共18页
Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee th... Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence. 展开更多
关键词 seismic fragility UNCERTAINTY logistic lasso regression ±1000 kV main transformer sensitivity analysis
在线阅读 下载PDF
Regression analysis of squeezing-induced hybrid nanofluid flow in Darcy-Forchheimer porous medium
3
作者 K.MUHAMMAD M.SARFRAZ 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期193-208,共16页
This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates.One plate remains stationary,while the other moves downward at a squeezing veloci... This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates.One plate remains stationary,while the other moves downward at a squeezing velocity.The space between these plates contains a Darcy-Forchheimer porous medium.A mixture of water-based fluid with gold(Au)and silicon dioxide(Si O2)nanoparticles is formulated.In contrast to the conventional Fourier's heat flux equation,this study employs the Cattaneo-Christov heat flux equation.A uniform magnetic field is applied perpendicular to the flow direction,invoking magnetohydrodynamic(MHD)effects.Further,the model accounts for Joule heating,which is the heat generated when an electric current passes through the fluid.The problem is solved via NDSolve in MATHEMATICA.Numerical and statistical analyses are conducted to provide insights into the behavior of the nanomaterials between the parallel plates with respect to the flow,energy transport,and skin friction.The findings of this study have potential applications in enhancing cooling systems and optimizing thermal management strategies.It is observed that the squeezing motion generates additional pressure gradients within the fluid,which enhances the flow rate but reduces the frictional drag.Consequently,the fluid is pushed more vigorously between the plates,increasing the flow velocity.As the fluid experiences higher flow rates due to the increased squeezing effect,it spends less time in the region between the plates.The thermal relaxation,however,abruptly changes the temperature,leading to a decrease in the temperature fluctuations. 展开更多
关键词 convective boundary condition Darcy-Forchheimer medium hybrid nanofuid Joule heating magnetohydrodynamic(MHD) numerical solution squeezing flow regression analysis
在线阅读 下载PDF
The Efficacy of Statistics in All Major Fields of Research: A Focus on Regression Analysis
4
作者 Joseph Ozigis Akomodi 《Open Journal of Statistics》 2025年第1期53-72,共20页
The abstract provided offers a succinct overview of the research paper’s focus on the significance of statistics, specifically regression analysis, across diverse fields. The emphasis on regression analysis indicates... The abstract provided offers a succinct overview of the research paper’s focus on the significance of statistics, specifically regression analysis, across diverse fields. The emphasis on regression analysis indicates its importance as a statistical method that helps researchers understand relationships between variables and make predictions based on data. The inclusion of multiple disciplines, such as health sciences, social sciences, environmental studies, economics, engineering, clinical psychology, social psychology, developmental psychology, cognitive psychology, and education highlights the interdisciplinary relevance of regression analysis. This breadth suggests that the findings and methodologies discussed in the paper may have wide applications, benefiting various sectors by enhancing the quality of research outcomes. The mention of “methodologies and data analysis techniques” indicates that the paper will likely delve into specific statistical approaches, offering a comprehensive examination of how regression analysis is applied in real-world scenarios. This nuance is essential, as it demonstrates the research’s commitment to not only presenting theoretical insights but also practical applications. Furthermore, the abstract states that regression analysis “enhances the validity of findings” and “informs data-driven decision-making.” This assertion underlines the critical role that robust statistical methods play in ensuring that research conclusions are reliable and applicable. The ability of regression analysis to provide clarity and support informed decisions makes it a valuable tool in both academic and professional settings. The abstract effectively outlines the paper’s exploration of regression analysis in various fields, underscoring its importance in enhancing research validity and facilitating informed decision-making. The interdisciplinary nature of the research broadens its appeal and emphasizes the need for rigorous statistical approaches in addressing complex issues across different domains. 展开更多
关键词 Statistics through the Less of regression analysis in All Fields of Study
在线阅读 下载PDF
Regression analysis and its application to oil and gas exploration:A case study of hydrocarbon loss recovery and porosity prediction,China
5
作者 Yang Li Xiaoguang Li +3 位作者 Mingyu Guo Chang Chen Pengbo Ni Zijian Huang 《Energy Geoscience》 EI 2024年第4期240-252,共13页
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not... In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery. 展开更多
关键词 regression analysis Oil and gas exploration Multiple linear regression model Nonlinear regression model Hydrocarbon loss recovery Porosity prediction
在线阅读 下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
6
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization Logistic regression Model K-Means Clustering analysis Elbow Rule Parameter Verification
在线阅读 下载PDF
Logistic Regression Analysis of Catheter Fixation Defects and Their Influencing Factors
7
作者 Xiaoli LI 《Medicinal Plant》 2024年第6期63-65,共3页
[Objectives] To analyze the influencing factors of fixed defects in patients with catheter fixation in clinical nursing work, in order to provide the best catheter fixation nursing plan for patients.[Methods] 176 inpa... [Objectives] To analyze the influencing factors of fixed defects in patients with catheter fixation in clinical nursing work, in order to provide the best catheter fixation nursing plan for patients.[Methods] 176 inpatients with indwelling catheter from surgical system of Taihe Hospital in Shiyan City from August 2022 to March 2023 were selected. Using a retrospective analysis method, the influencing factors of catheter fixation defects in the study subjects were divided into two categories based on objective characteristics: type I non modifiable influencing factors and type II modifiable influencing factors. Using the standard for catheter fixation defects, whether the patient had catheter fixation defects was determined. After classified and statistically analyzed item by item, binary Logistic multiple regression analysis was used to identify the influencing factors.[Results] The occurrence of catheter fixation defects in patients with catheter fixation was related to factors such as whether the patient was evaluated before fixation, whether the fixation method was standardized and systematic, whether there was sufficient communication between nurses and patients, and the patient s knowledge of catheter fixation. It was also influenced by factors such as the patient s age, catheterization site, catheterization number, catheterization duration, where there was a consciousness disorder, educational level, and external environmental temperature.[Conclusions] Early attention to the key factors affecting patients with catheter fixation defects can effectively prevent adverse factors and provide patients with the best catheter fixation nursing plan to improve nursing quality. 展开更多
关键词 CATHETER Fixed defect Influence factor Logistic regression analysis
在线阅读 下载PDF
DDM regression analysis of the in-situ stress field in a non-linear fault zone 被引量:9
8
作者 Ke Li Ying-yi Wang Xing-chun Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第7期567-573,共7页
A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacem... A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacement discontinuity method (DDM) program. The Bar- ton-Bandis model and the Kulhaway model are adopted as the normal and the tangential deformation model of faults, respectively, where the Mohr-Coulomb failure criterion is satisfied. In practical projects, the values of the mechanical parameters of rock and faults are restricted in a bounded range for in-situ test, and the optimal mechanical parameters are obtained from this range by a loop. Comparing with the traditional finite element method (FEM), the DDM regression results are more accurate. 展开更多
关键词 displacement discontinuity method (DDM) in-situ stress regression analysis FAULTS ROCK
在线阅读 下载PDF
Application of cluster analysis and stepwise regression in predicting the traffic volume of lanes 被引量:5
9
作者 张赫 王炜 顾怀中 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期359-362,共4页
Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections... Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections,cluster analysis and stepwise regression are integrated to predict the traffic volume of lanes at non-detector isolated controlled intersections.First cluster analysis is used to cluster the lanes of non-detector isolated signal-controlled intersections and the lanes of all signal-controlled intersections with detectors.Then, by the results of cluster analysis,the traffic volume samples are selected randomly and stepwise regression is used to predict the traffic volume of lanes at non-detector isolated signal-controlled intersections.The method is tested by the traffic volume data of lanes of the road network of Nanjing city.The problem of predicting the traffic volume of lanes at non-detector isolated signal-controlled intersections was resolved and can be widely used in urban traffic flow guidance and urban traffic control in cities without enough intersections equipped with detectors. 展开更多
关键词 intelligent transportation systems (ITS) cluster analysis stepwise regression
在线阅读 下载PDF
Population Quantity Variations of Oriental Fruit Fly (Bactrocera dorsalis Hendel) on the Basis of Stepwise Regression Analysis
10
作者 张丽莲 杨林楠 杨仕生 《Plant Diseases and Pests》 CAS 2010年第2期32-34,共3页
[Objective] The research aimed to study the significant influence factors of the population variations of oriental fruit fly. [Method] Using stepwise regression analysis, the population variations law of oriental frui... [Objective] The research aimed to study the significant influence factors of the population variations of oriental fruit fly. [Method] Using stepwise regression analysis, the population variations law of oriental fruit fly in Jianshui County of Yunnan province and the meteorological factors that caused its occurrence were analyzed. And the regression model was built. Finally, the regression model was tested on the basis of the data in Jianshui County of Yunnan Province during 2004-2006.[Result] The main meteorological factors that influenced the occurrence of oriental fruit fly were relative humidity, the lowest monthly temperature and rainfall. [Conclusion] This study will provide certain reference for the prediction researches on the time, quantity and occurrence peak of oriental fruit fly. 展开更多
关键词 Oriental fruit fly Stepwise regression analysis Meteorological factors
在线阅读 下载PDF
Study on the Evaluation Methodology of Landslide Susceptibility Based on Spatial-scale Analysis
11
作者 Zijing Lin Jian Tang +2 位作者 Yiling Dai Bing Luo Anqi Chen 《Journal of World Architecture》 2025年第1期47-52,共6页
Landslides are significant natural geological hazards.Landslide susceptibility evaluation involves the quantitative assessment and prediction of potential landslide locations and their probabilities.Research has explo... Landslides are significant natural geological hazards.Landslide susceptibility evaluation involves the quantitative assessment and prediction of potential landslide locations and their probabilities.Research has explored susceptibility assessment methods based on spatial-scale analysis.This evaluation integrates two models—global and local scale—using a CNN model and a PSO-CNN coupled model.Key aspects include selecting evaluation factors and optimizing model parameters for landslide susceptibility at different scales.A major focus of current landslide research is utilizing prediction results to enhance prevention and control measures. 展开更多
关键词 Landslide susceptibility evaluation Spatial-scale analysis Lixian county Geographical weighted regression Particle swarm algorithm
在线阅读 下载PDF
Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network
12
作者 YÜNKÜL Kaan KARAÇOR Fatih +1 位作者 GÜRBÜZ Ayhan BUDAK TahsinÖmür 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3108-3122,共15页
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results... This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination. 展开更多
关键词 Undrained shear strength Liquidity index Water content ratio non-linear regression Artificial neural networks Fuzzy logic
在线阅读 下载PDF
Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting 被引量:11
13
作者 Hemant Agrawal A.K.Mishra 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期202-207,共6页
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m... The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%. 展开更多
关键词 Peak particle velocity(PPV) Blast-induced ground vibration Scaled distance regression analysis Wave SUPERIMPOSITION SINGLE-HOLE BLASTING
在线阅读 下载PDF
Isolated Area Load Forecasting using Linear Regression Analysis: Practical Approach 被引量:18
14
作者 M. A. Mahmud 《Energy and Power Engineering》 2011年第4期547-550,共4页
This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through l... This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through linear regression and based on the identification of factors on which electrical load growth depends. To determine the identification factors, areas are selected whose histories of load growth rate known and the load growth deciding factors are similar to those of the isolated area. The proposed analysis is applied to an isolated area of Bangladesh, called Swandip where a past history of electrical load demand is not available and also there is no possibility of connecting the area with the main land grid system. 展开更多
关键词 ISOLATED Area LOAD Forecasting LINEAR regression analysis (LRA).
在线阅读 下载PDF
Discrimination of Transgenic Rice Based on Near Infrared Reflectance Spectroscopy and Partial Least Squares Regression Discriminant Analysis 被引量:7
15
作者 ZHANG Long WANG Shan-shan +2 位作者 DING Yan-fei PAN Jia-rong ZHU Cheng 《Rice science》 SCIE CSCD 2015年第5期245-249,共5页
Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi... Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice. 展开更多
关键词 near infrared reflectance spectroscopy genetically-modified food regulation gene protein gene partial least squares regression discrimiant analysis
在线阅读 下载PDF
Stability of mine ventilation system based on multiple regression analysis 被引量:12
16
作者 JIA Ting-gui LIU Jian 《Mining Science and Technology》 EI CAS 2009年第4期463-466,共4页
In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre... In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems. 展开更多
关键词 ventilation network STABILITY diagonal connection multiple regression analysis
在线阅读 下载PDF
Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines 被引量:10
17
作者 Leilei Liu Shaohe Zhang +1 位作者 Yung-Ming Cheng Li Liang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期671-682,共12页
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl... This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs. 展开更多
关键词 Slope stability Efficient reliability analysis Spatial variability Random field Multivariate adaptive regression splines Monte Carlo simulation
在线阅读 下载PDF
A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy 被引量:5
18
作者 Guodong WANG Lanxiang SUN +3 位作者 Wei WANG Tong CHEN Meiting GUO Peng ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第7期11-20,共10页
In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection m... In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection method called recursive feature elimination based on ridge regression(Ridge-RFE)for the original spectral data is recommended to make full use of the valid information of spectra.In the Ridge-RFE method,the absolute value of the ridge regression coefficient was used as a criterion to screen spectral characteristic,the feature with the absolute value of minimum weight in the input subset features was removed by recursive feature elimination(RFE),and the selected features were used as inputs of the partial least squares regression(PLS)model.The Ridge-RFE method based PLS model was used to measure the Fe,Si,Mg,Cu,Zn and Mn for 51 aluminum alloy samples,and the results showed that the root mean square error of prediction decreased greatly compared to the PLS model with full spectrum as input.The overall results demonstrate that the Ridge-RFE method is more efficient to extract the redundant features,make PLS model for better quantitative analysis results and improve model generalization ability. 展开更多
关键词 laser-induced breakdown spectroscopy feature selection ridge regression recursive feature elimination quantitative analysis
在线阅读 下载PDF
Electricity price forecasting using generalized regression neural network based on principal components analysis 被引量:1
19
作者 牛东晓 刘达 邢棉 《Journal of Central South University》 SCIE EI CAS 2008年第S2期316-320,共5页
A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the mai... A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%. 展开更多
关键词 ELECTRICITY PRICE forecasting GENERALIZED regression NEURAL NETWORK principal COMPONENTS analysis
在线阅读 下载PDF
Biological stability in drinking water: a regression analysis of influencing factors 被引量:1
20
作者 LUWei ZHANGXiao-jian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第3期395-398,共4页
Some parameters, such as assimilable organic carbon(AOC), chloramine residual, water temperature, and water residence time, were measured in drinking water from distribution systems in a northern city of China. The me... Some parameters, such as assimilable organic carbon(AOC), chloramine residual, water temperature, and water residence time, were measured in drinking water from distribution systems in a northern city of China. The measurement results illustrate that when chloramine residual is more than 0.3 mg/L or AOC content is below 50 μg/L, the biological stability of drinking water can be controlled. Both chloramine residual and AOC have a good relationship with Heterotrophic Plate Counts(HPC)(log value), the correlation coefficient was -0.64 and 0.33, respectively. By regression analysis of the survey data, a statistical equation is presented and it is concluded that disinfectant residual exerts the strongest influence on bacterial growth and AOC is a suitable index to assess the biological stability in the drinking water. 展开更多
关键词 AOC biological stability HPC residual chloramines regression analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部