In this study, to fabricate dual-pore scaffolds with interconnected pores, Non-solvent Induced Phase Separation (NIPS) and Wire-Network Molding (WNM) techniques were combined. First, a mold with uniform slits was ...In this study, to fabricate dual-pore scaffolds with interconnected pores, Non-solvent Induced Phase Separation (NIPS) and Wire-Network Molding (WNM) techniques were combined. First, a mold with uniform slits was prepared, and needles were inserted into the mold. Subsequently, polycaprolactone (PCL) pellets were dissolved in tetrahydrofuran (THF) at a specified ratio. The slurry was mixed using hot plate stirrer at 1200 rpm for 24 hours at 40 ~C. The PCL slurry was subsequently injected into the mold. Thereafter, to exchange the THF (solvent) with the ethanol (non-solvent), the mold was soaked in an ethanol bath. After removing the mold from the ethanol bath, the needles were removed from the mold. Consequently, dual-pore scaffold with interconnected pores was obtained. The surface morphology of the fabricated scaffolds were observed using Scanning Electron Microscope (SEM). Moreover, cell culture experiments were performed using the CCK-8 assay, and the characteristics of cells grown on the dual-pore scaffolds were assessed and were compared with the NIPS-based 3D plotting scaffold.展开更多
背景:用于骨组织工程的仿生多孔支架要求具有类细胞外基质纳米纤维结构和连通大孔结构,从而有效支持细胞植入、黏附、增殖等行为,促进组织再生。目的:结合最新相关研究动态,综述用于骨组织工程的纳米纤维大孔支架制备技术研究进展。方法...背景:用于骨组织工程的仿生多孔支架要求具有类细胞外基质纳米纤维结构和连通大孔结构,从而有效支持细胞植入、黏附、增殖等行为,促进组织再生。目的:结合最新相关研究动态,综述用于骨组织工程的纳米纤维大孔支架制备技术研究进展。方法:由第一作者以"bone tissue engineering,nanofibrous,macroporous,scaffolds"为英文检索词,以"骨组织工程、纳米纤维、大孔、支架"为中文检索词,使用计算机检索Web of science、知网、百度学术数据库中2000至2019年已发表的相关文献,并进行筛选,归纳和总结,最终纳入58篇相关文献进行综述。结果与结论:目前构建纳米纤维结构方法仍局限于静电纺丝、热致相分离和自组装,单一方法制备的骨组织工程支架存在很多问题,其中最大的问题是:很难提供一个三维相互连通的大孔结构来模拟体内的微环境,诱导细胞的迁移、生长、分化、增殖,最终再生新的组织和器官。通过多技术手段的综合运用开发制备大孔纳米纤维支架是必要的,具有重要的科学与现实意义。三维打印对于结构的调控十分精确,可以对支架内部结构及外部形状进行定制,达到双重调控,为骨组织工程的将来带来了发展。展开更多
To functionalize poly(vinyl chloride)(PVC) for various applications, monomers containing tertiary amine group are incorporated into PVC via atom transfer radical polymerization(ATRP) initiated by the labile chlo...To functionalize poly(vinyl chloride)(PVC) for various applications, monomers containing tertiary amine group are incorporated into PVC via atom transfer radical polymerization(ATRP) initiated by the labile chlorines in their backbones. The kinetics of synthesis was carefully investigated, and it is proven that the grafting polymerization process can be effectively controlled by regulating the reaction time. The membranes are fabricated using PVC and copolymers by non-solvent induced phase separation(NIPS) process. The hydrophilicity and pore structure of copolymer membranes were enhanced as well, these membranes are endowed with positive charge. When PDMA%(i.e., the PDMA weight percentage in copolymer) is 31.1%, the flux and Victoria blue B rejection are 26.0 L·m·^-2·h^-1(0.5 MPa) and 91.2%, respectively. Thus, the newly synthesized polymer is proven to be a promising material for dye separation with positive charges.展开更多
文摘In this study, to fabricate dual-pore scaffolds with interconnected pores, Non-solvent Induced Phase Separation (NIPS) and Wire-Network Molding (WNM) techniques were combined. First, a mold with uniform slits was prepared, and needles were inserted into the mold. Subsequently, polycaprolactone (PCL) pellets were dissolved in tetrahydrofuran (THF) at a specified ratio. The slurry was mixed using hot plate stirrer at 1200 rpm for 24 hours at 40 ~C. The PCL slurry was subsequently injected into the mold. Thereafter, to exchange the THF (solvent) with the ethanol (non-solvent), the mold was soaked in an ethanol bath. After removing the mold from the ethanol bath, the needles were removed from the mold. Consequently, dual-pore scaffold with interconnected pores was obtained. The surface morphology of the fabricated scaffolds were observed using Scanning Electron Microscope (SEM). Moreover, cell culture experiments were performed using the CCK-8 assay, and the characteristics of cells grown on the dual-pore scaffolds were assessed and were compared with the NIPS-based 3D plotting scaffold.
文摘背景:用于骨组织工程的仿生多孔支架要求具有类细胞外基质纳米纤维结构和连通大孔结构,从而有效支持细胞植入、黏附、增殖等行为,促进组织再生。目的:结合最新相关研究动态,综述用于骨组织工程的纳米纤维大孔支架制备技术研究进展。方法:由第一作者以"bone tissue engineering,nanofibrous,macroporous,scaffolds"为英文检索词,以"骨组织工程、纳米纤维、大孔、支架"为中文检索词,使用计算机检索Web of science、知网、百度学术数据库中2000至2019年已发表的相关文献,并进行筛选,归纳和总结,最终纳入58篇相关文献进行综述。结果与结论:目前构建纳米纤维结构方法仍局限于静电纺丝、热致相分离和自组装,单一方法制备的骨组织工程支架存在很多问题,其中最大的问题是:很难提供一个三维相互连通的大孔结构来模拟体内的微环境,诱导细胞的迁移、生长、分化、增殖,最终再生新的组织和器官。通过多技术手段的综合运用开发制备大孔纳米纤维支架是必要的,具有重要的科学与现实意义。三维打印对于结构的调控十分精确,可以对支架内部结构及外部形状进行定制,达到双重调控,为骨组织工程的将来带来了发展。
基金financially supported by the National 863 Program(No.2012AA03A602)National 973 Program(No.2009CB623402)the National Natural Science Foundation of China(No.U1134002)
文摘To functionalize poly(vinyl chloride)(PVC) for various applications, monomers containing tertiary amine group are incorporated into PVC via atom transfer radical polymerization(ATRP) initiated by the labile chlorines in their backbones. The kinetics of synthesis was carefully investigated, and it is proven that the grafting polymerization process can be effectively controlled by regulating the reaction time. The membranes are fabricated using PVC and copolymers by non-solvent induced phase separation(NIPS) process. The hydrophilicity and pore structure of copolymer membranes were enhanced as well, these membranes are endowed with positive charge. When PDMA%(i.e., the PDMA weight percentage in copolymer) is 31.1%, the flux and Victoria blue B rejection are 26.0 L·m·^-2·h^-1(0.5 MPa) and 91.2%, respectively. Thus, the newly synthesized polymer is proven to be a promising material for dye separation with positive charges.