In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional me...In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional methods to detect P-wave first motions and locate AE hypocenters in three dimensions. In addition, we selected events located with sufficient accuracy(normally corresponding AE events of relatively larger energy, showing clear P-wave first motion and a higher signal-to-noise ratio in most channels) as template events. Then, the template events were used to scan and match other poorly located events in triggered event records or weak events in continuous records. Through crosscorrelation of the multi-channel waveforms between the template and the event to be detected, the weak signal was detected and located using a grid-searching algorithm(with the grid centered at the template hypocenter). In order to examine the performance of the approach, we calibrated the proposed method using experimental data of different rocks and different types of experiments. The results show that the proposed method can significantly improve the detection capability and location accuracy, and can be applied to various laboratory and in situ experiments, which use multi-channel AE monitoring with waveforms recorded in either triggering or continuous mode.展开更多
Regarding high drilling costs,an effort should be made to substantially reduce the drilling operation.To achieve this goal,exploration and development stages should be carried out precisely with maximum information ac...Regarding high drilling costs,an effort should be made to substantially reduce the drilling operation.To achieve this goal,exploration and development stages should be carried out precisely with maximum information acquired from the reservoir.The use of multi-attribute matching technology to predict sedimentary system has always been a very important but challenging task.To resolve the challenges,we utilized a quantitative analysis method of seismic attributes based on geological models involving high resolution 3D seismic data for sedimentary facies.We developed a workflow that includes core data,seismic attribute analysis,and well logging to highlight the benefit of understanding the facies distribution in the 3 rd Member of the Lower Jurassic Badaowan Formation,Hongshanzui area,Junggar Basin,China.1)Data preprocessing.2)Cluster analysis.3)RMS attribute based on a normal distribution constrains facies boundary.4)Mapping the sedimentary facies by using MRA(multiple regression analysis)prediction model combined with the lithofacies assemblages and logging facies assemblages.The confident level presented in this research is 0.745,which suggests that the methods and data-mining techniques are practical and efficient,and also be used to map facies in other similar geological settings.展开更多
Linear octrees offer a volume representation of 3-D objects, which is quite compactand lends itself to traditional object processing operations. However, the linear octree structurefor generating the representation of...Linear octrees offer a volume representation of 3-D objects, which is quite compactand lends itself to traditional object processing operations. However, the linear octree structurefor generating the representation of 3-D objects from three orthogonal silhouettes by using thevolume intersection technique is dependent on viewpoints. The recognition achieved from match-ing object representations to model representations requires that the representations of objectsare independent of viewpoints. In order to obtain independent representations of viewpoints,the three principal axes of the object should be obtained from the moment of inertia matrix bycomputing its eigenvectors. The linear octree is projected onto the image planes of the three prin-cipal views (along the principal axes) to obtain the three normalized linear quadtrees. The objectmatching procedure has two phases: the first phase is to match the normalized linear quadtrees ofthe unknown object to a subset of models contained in a library utilizing a measure of symmetricdifference; the second phase is to generate the normalized linear octrees of the object and theseselected models and then to match the normalized linear octree of the unknown object with themodel having the minimum symmetric difference.展开更多
This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influ...This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.展开更多
This paper represents a template matching using statistical model and parametric template for multi-template. This algorithm consists of two phases: training and matching phases. In the training phase, the statistical...This paper represents a template matching using statistical model and parametric template for multi-template. This algorithm consists of two phases: training and matching phases. In the training phase, the statistical model created by principal component analysis method (PCA) can be used to synthesize multi-template. The advantage of PCA is to reduce the variances of multi-template. In the matching phase, the normalized cross correlation (NCC) is employed to find the candidates in inspection images. The relationship between image block and multi-template is built to use parametric template method. Results show that the proposed method is more efficient than the conventional template matching and parametric template. Furthermore, the proposed method is more robust than conventional template method.展开更多
Cross-correlation (CC) is the most time-consuming in the implementation of image matching algorithms based on the correlation method. Therefore, how to calculate CC fast is crucial to real-time image matching. This ...Cross-correlation (CC) is the most time-consuming in the implementation of image matching algorithms based on the correlation method. Therefore, how to calculate CC fast is crucial to real-time image matching. This work reveals that the single cascading multiply-accumulate (CAMAC) and concurrent multiply-accumulate (COMAC) architectures which have been widely used in the past, actually, do not necessarily bring about a satisfactory time performance for CC. To obtain better time performance and higher resource efficiency, this paper proposes a configurable circuit involving the advantages of CAMAC and COMAC for a large amount of multiply-accumulate (MAC) operations of CC in exhaustive search. The proposed circuit works in an array manner and can better adapt to changing size image matching in real-time processing. Experimental results demonstrate that this novel circuit which involves the two structures can complete vast MAC calculations at a very high speed. Compared with existing related work, it improves the computation density further and is more flexible to use.展开更多
基金funding support from Grant-in-Aid for Scientific Research(Grant No.19H00722)by Japan Society for the Promotion of Science(JSPS)。
文摘In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional methods to detect P-wave first motions and locate AE hypocenters in three dimensions. In addition, we selected events located with sufficient accuracy(normally corresponding AE events of relatively larger energy, showing clear P-wave first motion and a higher signal-to-noise ratio in most channels) as template events. Then, the template events were used to scan and match other poorly located events in triggered event records or weak events in continuous records. Through crosscorrelation of the multi-channel waveforms between the template and the event to be detected, the weak signal was detected and located using a grid-searching algorithm(with the grid centered at the template hypocenter). In order to examine the performance of the approach, we calibrated the proposed method using experimental data of different rocks and different types of experiments. The results show that the proposed method can significantly improve the detection capability and location accuracy, and can be applied to various laboratory and in situ experiments, which use multi-channel AE monitoring with waveforms recorded in either triggering or continuous mode.
基金supported by the National Natural Science Foundation of China(41902109)Tianshan Youth Program(2020Q064)+1 种基金National Major Projects(2017ZX05001004)Tianshan Innovation Team Program(2020D14023)。
文摘Regarding high drilling costs,an effort should be made to substantially reduce the drilling operation.To achieve this goal,exploration and development stages should be carried out precisely with maximum information acquired from the reservoir.The use of multi-attribute matching technology to predict sedimentary system has always been a very important but challenging task.To resolve the challenges,we utilized a quantitative analysis method of seismic attributes based on geological models involving high resolution 3D seismic data for sedimentary facies.We developed a workflow that includes core data,seismic attribute analysis,and well logging to highlight the benefit of understanding the facies distribution in the 3 rd Member of the Lower Jurassic Badaowan Formation,Hongshanzui area,Junggar Basin,China.1)Data preprocessing.2)Cluster analysis.3)RMS attribute based on a normal distribution constrains facies boundary.4)Mapping the sedimentary facies by using MRA(multiple regression analysis)prediction model combined with the lithofacies assemblages and logging facies assemblages.The confident level presented in this research is 0.745,which suggests that the methods and data-mining techniques are practical and efficient,and also be used to map facies in other similar geological settings.
文摘Linear octrees offer a volume representation of 3-D objects, which is quite compactand lends itself to traditional object processing operations. However, the linear octree structurefor generating the representation of 3-D objects from three orthogonal silhouettes by using thevolume intersection technique is dependent on viewpoints. The recognition achieved from match-ing object representations to model representations requires that the representations of objectsare independent of viewpoints. In order to obtain independent representations of viewpoints,the three principal axes of the object should be obtained from the moment of inertia matrix bycomputing its eigenvectors. The linear octree is projected onto the image planes of the three prin-cipal views (along the principal axes) to obtain the three normalized linear quadtrees. The objectmatching procedure has two phases: the first phase is to match the normalized linear quadtrees ofthe unknown object to a subset of models contained in a library utilizing a measure of symmetricdifference; the second phase is to generate the normalized linear octrees of the object and theseselected models and then to match the normalized linear octree of the unknown object with themodel having the minimum symmetric difference.
文摘This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.
文摘This paper represents a template matching using statistical model and parametric template for multi-template. This algorithm consists of two phases: training and matching phases. In the training phase, the statistical model created by principal component analysis method (PCA) can be used to synthesize multi-template. The advantage of PCA is to reduce the variances of multi-template. In the matching phase, the normalized cross correlation (NCC) is employed to find the candidates in inspection images. The relationship between image block and multi-template is built to use parametric template method. Results show that the proposed method is more efficient than the conventional template matching and parametric template. Furthermore, the proposed method is more robust than conventional template method.
文摘Cross-correlation (CC) is the most time-consuming in the implementation of image matching algorithms based on the correlation method. Therefore, how to calculate CC fast is crucial to real-time image matching. This work reveals that the single cascading multiply-accumulate (CAMAC) and concurrent multiply-accumulate (COMAC) architectures which have been widely used in the past, actually, do not necessarily bring about a satisfactory time performance for CC. To obtain better time performance and higher resource efficiency, this paper proposes a configurable circuit involving the advantages of CAMAC and COMAC for a large amount of multiply-accumulate (MAC) operations of CC in exhaustive search. The proposed circuit works in an array manner and can better adapt to changing size image matching in real-time processing. Experimental results demonstrate that this novel circuit which involves the two structures can complete vast MAC calculations at a very high speed. Compared with existing related work, it improves the computation density further and is more flexible to use.