期刊文献+
共找到1,036篇文章
< 1 2 52 >
每页显示 20 50 100
The Optimal Matching Parameter of Half Discrete Hilbert Type Multiple Integral Inequalities with Non-Homogeneous Kernels and Applications
1
作者 HONG Yong HE Bing 《Chinese Quarterly Journal of Mathematics》 2021年第3期252-262,共11页
By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent ... By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent conditions of the optimal matching parameter are established,and the expression of the optimal constant factor is obtained.Finally,their applications in operator theory are considered. 展开更多
关键词 Non-homogeneous kernel Half discrete Hilbert type multiple integral in-equality Best constant factor optimal matching parameter Operator norm Bounded operator
在线阅读 下载PDF
基于GPGPU-sim的多kernel场景下GPGPU性能优化实验方法
2
作者 张军 魏继桢 +2 位作者 沈凡凡 谭海 何炎祥 《实验技术与管理》 CAS 北大核心 2024年第7期87-93,共7页
该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的... 该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的一种自适应线程块调度方法的改进思想、实验方法及过程,还对GPGPU的微系统结构、GPGPU-sim模拟器及源代码结构进行了介绍。实验结果表明,该文阐述的实验方法可行,相对于基准方法,该文提出的改进策略可以提升多kernel场景下GPGPU的执行效率。 展开更多
关键词 kernel场境 GPGPU GPGPU-sim 性能优化
在线阅读 下载PDF
Decision Bayes Criteria for Optimal Classifier Based on Probabilistic Measures 被引量:1
3
作者 Wissal Drira Faouzi Ghorbel 《Journal of Electronic Science and Technology》 CAS 2014年第2期216-219,共4页
This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the... This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the Bayes classification error probability, we propose to use an iterative algorithm to optimize the dimension reduction for classification with a probabilistic approach to achieve the Bayes classifier. The estimated probabilities of different errors encountered along the different phases of the system are realized by the Kernel estimate which is adjusted in a means of the smoothing parameter. Experiment results suggest that the proposed approach performs well. 展开更多
关键词 Bayesian classifier dimension reduction kernel method optimization probabilistic dependence measure smoothing parameter
在线阅读 下载PDF
Data-driven source-load robust optimal scheduling of integrated energy production unit including hydrogen energy coupling 被引量:2
4
作者 Jinling Lu Dingyue Huang Hui Ren 《Global Energy Interconnection》 EI CSCD 2023年第4期375-388,共14页
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations... A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness. 展开更多
关键词 Hydrogen energy coupling DATA-DRIVEN Robust kernel density estimation Robust optimization Integrated demand response
在线阅读 下载PDF
Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine 被引量:1
5
作者 Tusongjiang Kari Zhiyang He +3 位作者 Aisikaer Rouzi Ziwei Zhang Xiaojing Ma Lin Du 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期691-705,共15页
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura... Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy. 展开更多
关键词 Power transformer fault diagnosis kernel extreme learning machine aquila optimization random forest
在线阅读 下载PDF
Application of Particle Swarm Optimization to Fault Condition Recognition Based on Kernel Principal Component Analysis 被引量:1
6
作者 WEI Xiu-ye PAN Hong-xia HUANG Jin-ying WANG Fu-jie 《International Journal of Plant Engineering and Management》 2009年第3期129-135,共7页
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke... Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines. 展开更多
关键词 particle swarm optimization kernel principal component analysis kernel function parameter feature extraction gearbox condition recognition
在线阅读 下载PDF
Multi-state Information Dimension Reduction Based on Particle Swarm Optimization-Kernel Independent Component Analysis
7
作者 邓士杰 苏续军 +1 位作者 唐力伟 张英波 《Journal of Donghua University(English Edition)》 EI CAS 2017年第6期791-795,共5页
The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA'... The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA's kernel parameters for improving its feature dimension reduction result. In this paper, a fitness function was established by use of the ideal of Fisher discrimination function firstly. Then the global optimal solution of fitness function was searched by particle swarm optimization( PSO) algorithm and a multi-state information dimension reduction algorithm based on PSO-KICA was established. Finally,the validity of this algorithm to enhance the precision of feature dimension reduction has been proven. 展开更多
关键词 kernel independent component analysis(KICA) particle swarm optimization(PSO) feature dimension reduction fitness function
在线阅读 下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
8
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
在线阅读 下载PDF
二元混合气体成分检测的改进蒲公英算法研究
9
作者 李鹏 汤炼海 +2 位作者 林事力 纵彪 于涛 《传感器与微系统》 北大核心 2025年第2期15-20,共6页
针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策... 针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策略(EOBL)引入蒲公英种子位置更新,提高原算法寻优精度。将该算法用于KELM参数寻优,建立改进DO(IDO)算法优化KELM模型,实现对二元混合气体的成分识别。实验结果表明:IDO算法优化的KELM模型对二元混合气体成分识别准确率可达99.71%,比原始KELM模型提高4.28%。 展开更多
关键词 改进蒲公英优化算法 核极限学习机 气体分类
在线阅读 下载PDF
极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法
10
作者 张传伟 张刚强 +4 位作者 路正雄 李林岳 何正伟 龚凌霄 黄骏峰 《工矿自动化》 北大核心 2025年第3期22-31,38,共11页
在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深... 在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深度混合核极限学习机(DHKELM)的液压支架带压移架残余支撑力决策方法。在混合核极限学习机(HKELM)基础上引入极限学习机自动编码器(ELM-AE)结构来构建DHKELM模型,以增强对复杂输入的特征提取和非线性映射能力;引入ICMIC混沌映射、Lévy飞行和贪婪策略对蜣螂算法(DBO)进行改进,形成具备更高寻优精度和更快收敛速度的IDBO算法;利用IDBO算法优化DHKELM模型的超参数,建立IDBO-DHKELM模型。结合极薄煤层综采工作面液压支架带压移架实测数据,通过可视化和相关性分析,确定支架号、带压移架前支架支撑力、推移油缸进液压力和推移油缸行程变化速度作为影响残余支撑力的关键特征,并构建残余支撑力决策样本数据集,最终完成IDBO-DHKELM模型的训练与评估。实验结果表明:基于IDBO-DHKELM模型的液压支架带压移架残余支撑力决策结果的均方根误差(RMSE)、平均绝对误差(MAE)及决定系数(R^(2))分别为0.143,0.119,0.971,具有较高的决策精确度。 展开更多
关键词 极薄煤层 液压支架 带压移架 残余支撑力 改进蜣螂算法 深度混合核极限学习机
在线阅读 下载PDF
基于IDBO-HKELM-Adaboost的煤与瓦斯突出危险性预测方法
11
作者 李曼 徐耀松 +1 位作者 王雨虹 王丹丹 《传感技术学报》 北大核心 2025年第3期477-486,共10页
为实现更加高效准确地完成煤与瓦斯突出危险性预测,提出了一种采用Adaboost算法增强的改进蜣螂算法(IDBO)优化混合核极限学习机(HKELM)的预测模型。首先,在数据降维时采用核主成分分析(KPCA)对影响因素进行处理并提取有效的特征量,得到... 为实现更加高效准确地完成煤与瓦斯突出危险性预测,提出了一种采用Adaboost算法增强的改进蜣螂算法(IDBO)优化混合核极限学习机(HKELM)的预测模型。首先,在数据降维时采用核主成分分析(KPCA)对影响因素进行处理并提取有效的特征量,得到预处理样本数据。将PWLCM混沌映射、非线性递减策略以及邻域学习机制融入到蜣螂算法中,之后,利用IDBO对HKELM的关键参数进行寻优,构建IDBO-HKELM煤与瓦斯突出危险性分类预测模型。最后,使用Adaboost算法对IDBO-HKELM模型进行增强。结合工程实际数据进行验证,验证结果表明:相较于其他模型,基于IDBO-HKELM-Adaboost的预测方法具有更高的预测精度,在提高运算效率的同时满足煤与瓦斯突出预测的精度和可靠性要求,准确率达到97.44%。 展开更多
关键词 煤与瓦斯突出 突出预测 改进蜣螂算法 混合核极限学习机 核主成分分析 预测模型
在线阅读 下载PDF
基于SPSO优化Multiple Kernel-TWSVM的滚动轴承故障诊断 被引量:7
12
作者 徐冠基 曾柯 柏林 《振动.测试与诊断》 EI CSCD 北大核心 2019年第5期973-979,1130,共8页
双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式... 双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式全局核函数方法组成双核函数来改进TWSVM以提高其泛化能力和分类性能,并采用简化粒子群优化(simple particle swarm optimization,简称SPSO)方法来对权值和参数进行优化,提出了SPSO优化Multiple Kernel-TWSVM模型,将该模型应用到滚动轴承故障诊断模式识别中。实验结果表明,双核TWSVM比单核TWSVM和反向传播(back propagation,简称BP)神经网络具有更高的分类准确率。 展开更多
关键词 滚动轴承 故障诊断 相空间重构 简化粒子群优化 双核双子支持向量机
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
13
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
改进蛇优化算法及其在短期风电功率预测中的应用
14
作者 周璇 赵梦玲 殷新宇 《云南大学学报(自然科学版)》 北大核心 2025年第2期255-265,共11页
为了对风电功率进行精确预测,基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、改进蛇优化算法(improved snake optimization,ISO)和核极限学习机(kernel extreme learning machine,KELM),提出... 为了对风电功率进行精确预测,基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、改进蛇优化算法(improved snake optimization,ISO)和核极限学习机(kernel extreme learning machine,KELM),提出了一种混合短期风电功率预测模型.首先,利用CEEMD将非平稳的风电功率数据分解为若干相对平稳的分量,以降低原始数据的不稳定性;然后,引入改进蛇优化算法对KELM参数进行优化,并对各平稳分量和残差构建CEEMD-ISO-KELM预测模型;最后,将各分量和残差的预测结果进行重构,得到最终的风电功率预测结果.仿真结果表明,与现有预测模型相比,提出的预测模型能够很好地预测风电功率的变化趋势,在短期风电功率预测中取得了较好的精度. 展开更多
关键词 短期风电功率 改进蛇优化算法 核极限学习机
在线阅读 下载PDF
基于核Fisher判别分析的船舶中央冷却器状态评估
15
作者 吴小豪 邹永久 刘军朴 《舰船科学技术》 北大核心 2025年第2期185-189,共5页
为实现船舶系统或设备的实时状态评估,本文采用核Fisher判别分析法,以船舶中央冷却器为例,选择合适的核函数及核参数,利用其正常数据和异常数据建立状态评估模型,即最佳投影方向,并利用过程数据验证其有效性。结果表明,核Fisher判别分... 为实现船舶系统或设备的实时状态评估,本文采用核Fisher判别分析法,以船舶中央冷却器为例,选择合适的核函数及核参数,利用其正常数据和异常数据建立状态评估模型,即最佳投影方向,并利用过程数据验证其有效性。结果表明,核Fisher判别分析法无需深入分析中央冷却器的结构与原理即可有效识别中央冷却器的正常工况和异常工况,同时能够通过投影值准确描述过程工况的变化过程。在故障发展初期,根据运行参数投影值的变化趋势,可判断船舶系统或设备状态的发展趋势,为早期发现船舶系统或设备的重复性故障提供有效手段。对于船舶系统或设备而言,具有重要的工程实际应用意义。 展开更多
关键词 智能船舶 状态评估 核Fisher判别分析法 中央冷却器 最佳投影方向 重复性故障
在线阅读 下载PDF
基于改进蚁群算法的大核矩阵搜索方案
16
作者 胡凌峰 黄志亮 +1 位作者 张莜燕 周水红 《通信技术》 2025年第1期14-18,共5页
大核极化码相较于核矩阵维度更小的极化码,通常有着更大的极化速率,所以有着更优的译码性能。然而,随着维度的增加,核矩阵的搜索空间和极化速率的计算复杂度呈指数级增加,但现有的研究并不能摆脱维度增加所带来的指数级复杂度。引入智... 大核极化码相较于核矩阵维度更小的极化码,通常有着更大的极化速率,所以有着更优的译码性能。然而,随着维度的增加,核矩阵的搜索空间和极化速率的计算复杂度呈指数级增加,但现有的研究并不能摆脱维度增加所带来的指数级复杂度。引入智能优化算法——蚁群算法来搜索较大极化速率的大核矩阵,通过适当调整算法参数,算法能在可行时间内找到较优的大核矩阵。另外,引入莱维飞行进行算法优化,避免算法过早陷入局部最优。实验结果表明,所提算法能够稳定地找出13阶及以下拥有最佳极化速率的核矩阵,对于更高维度的矩阵也能输出不错的结果。 展开更多
关键词 极化码 极化速率 蚁群算法 莱维飞行 最优核矩阵
在线阅读 下载PDF
基于BKA-CNN-SVM模型的岩爆烈度预测
17
作者 慕慧文 周宗红 +3 位作者 郑发萍 刘剑 曾顺洪 段勇 《高压物理学报》 北大核心 2025年第5期103-116,共14页
为实现准确高效的岩爆烈度预测,做好地下工程灾害防治,提出了一种基于黑翅鸢优化算法-卷积神经网络-支持向量机(BKA-CNN-SVM)的岩爆烈度预测模型。首先,根据岩爆烈度的影响因素,确立6个主要岩爆预测指标,搜集国内外284组岩爆案例,建立... 为实现准确高效的岩爆烈度预测,做好地下工程灾害防治,提出了一种基于黑翅鸢优化算法-卷积神经网络-支持向量机(BKA-CNN-SVM)的岩爆烈度预测模型。首先,根据岩爆烈度的影响因素,确立6个主要岩爆预测指标,搜集国内外284组岩爆案例,建立岩爆数据库;然后,引入拉依达准则与1.5倍四分位差对数据进行异常值剔除及替换;接着,采用核主成分分析,对数据进行降维及特征提取,并将所提取的特征作为模型输入;最后,通过引入混淆矩阵,结合准确率、精确率、F_(1)值、召回率对模型性能进行评估,并与卷积神经网络(CNN)模型、极限学习机(ELM)模型、卷积神经网络与支持向量机(CNN-SVM)集成模型的性能进行对比。结果表明:BKA-CNN-SVM模型的准确率、精确率、F_(1)值、召回率分别达到95.35%、0.89、0.92、0.94,在预测精度和泛化程度上均明显优于其他模型。采用该模型预测锦屏二级水电站岩爆烈度,结果显示,预测结果与现场情况有较高的一致性。研究结果可为岩爆等级预测提供新方法。 展开更多
关键词 岩爆 核主成分分析 卷积神经网络 支持向量机 黑翅鸢优化算法
在线阅读 下载PDF
基于KPCA-IPOA-LSSVM的变压器电热故障诊断
18
作者 陈尧 周连杰 《南方电网技术》 北大核心 2025年第1期20-29,共10页
为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vec... 为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。首先用KPCA对多维变压器故障数据进行特征提取,降低计算复杂度。其次引入Logistic混沌映射、自适应权重策略和透镜成像反向学习策略对鹈鹕优化算法(pelican optimization algorithm,POA)进行改进。最后建立了KPCA-IPOA-LSSVM故障诊断模型,诊断精度为94.24%,与PCA-IPOA-SVM、KPCA-IPOA-SVM、KPCA-WOA-LSSVM和KPCA-POA-LSSVM故障诊断模型进行对比,准确率分别提升了18.31%、11.53%、11.87%、7.46%。结果表明,所提出的变压器故障诊断模型有效提高了故障诊断的准确率,证明了该诊断模型具有一定的理论研究和实际工程应用意义。 展开更多
关键词 变压器 鹈鹕优化算法 最小二乘支持向量机 核主成分分析 故障诊断
在线阅读 下载PDF
基于监督核熵的空压机阀片故障诊断优化
19
作者 赵凯 王永坚 +1 位作者 蔡杭溪 李劼 《船海工程》 北大核心 2025年第1期13-19,共7页
空压机作为船舶航行过程中的关键设备,其运行状态的精准识别对船舶安全性能具有重要影响。鉴于空压机在工作过程中振动信息呈现出非平稳和非线性的特点,提出利用监督核熵成分分析对其特征数据选择,旨在通过数据降维保留关键特征信息,将... 空压机作为船舶航行过程中的关键设备,其运行状态的精准识别对船舶安全性能具有重要影响。鉴于空压机在工作过程中振动信息呈现出非平稳和非线性的特点,提出利用监督核熵成分分析对其特征数据选择,旨在通过数据降维保留关键特征信息,将处理后的特征信息输入到经过贝叶斯优化方法优化超参数的支持向量机模型中,以评估其在空压机状态识别方面的性能。经实验验证可知,该方法能够有效提升支持向量机模型的识别准确率,准确率可达98.47%。 展开更多
关键词 船用空压机 阀片故障诊断 监督核熵成分分析 贝叶斯优化 支持向量机
在线阅读 下载PDF
基于时频域多特征和优化KELM的电能质量扰动检测
20
作者 徐琳 范松海 +2 位作者 赵淳 隗震 刘畅 《山东电力技术》 2025年第3期59-67,共9页
电能质量扰动的准确分类是改善和治理电能质量的前提。为提高电能质量快速检测的准确性,提出一种基于时频多特征和改进核极端学习机(kernel extreme learning machine,KELM)的电能质量扰动(power quality disturbance,PQD)分类方法。该... 电能质量扰动的准确分类是改善和治理电能质量的前提。为提高电能质量快速检测的准确性,提出一种基于时频多特征和改进核极端学习机(kernel extreme learning machine,KELM)的电能质量扰动(power quality disturbance,PQD)分类方法。该方法首先利用小波变换和S变换提取各电能质量扰动信号的特征量,然后根据提取的特征量构造具有分类规则的KELM模型,并使用混沌粒子群优化(chaotic particle swarm optimization,CPSO)对KELM的参数进行自适应优化。实例仿真结果和对比分析表明,该方法能有效识别7种常见的单一扰动信号和10种复合扰动信号,并且抗噪声能力更强,分类精度高于KELM和PSO-KELM模型。该方法为电能质量的改善和治理提供了新的思路和方法。 展开更多
关键词 电能质量扰动分类 时频多特征 混沌粒子群优化 核极限学习机
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部