This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduc...This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.展开更多
Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR r...Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR reduction method for Wireless-MAN(metropolitan area network)-OFDM system based on IEEE 802.16, which is over-sampling clipping arithmetic. Simulation and performance of the over-samples clipping's PAPR reduction capability, BER effect is given. The simulation indicates that the PAPR of at least 99.9% OFDM symbol is below 6dB after 2 Nyquist rate clipping, and the performance of BER has 1dB SNR(signal noise ratio) loss. The results prove that this method has better capacity to reducing PAPR. So it can be well used in WMAN-OFDM system.展开更多
Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed ...Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.展开更多
To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox,...To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.展开更多
A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. ...A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. On the basis of the existing non-orthogonal STC, frequency diversity is studied and a new non-orthogonal STFC is further designed. Monte-Carlo simulations show that the non-orthogonal STFC-OFDM has the advantage of large diversity order, high bandwidth efficiency and better BER performance when compared with the orthogonal STC/STFC-OFDM and non-orthogonal STC-OFDM systems.展开更多
伴随铁路与道路建设的快速发展,移动通信需求日益增长,对通信稳定性及系统承载力等方面提出更为严苛的要求。同时,移动通信系统快速发展,长期演进进阶版(Long Term Evolution-Advance,LTE-A)技术得到广泛应用。文章着重探讨LTE-A和正交...伴随铁路与道路建设的快速发展,移动通信需求日益增长,对通信稳定性及系统承载力等方面提出更为严苛的要求。同时,移动通信系统快速发展,长期演进进阶版(Long Term Evolution-Advance,LTE-A)技术得到广泛应用。文章着重探讨LTE-A和正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术如何在移动场景下精确估测信道质量以及增强接收设备的工作表现,为同领域的研究工作提供借鉴。展开更多
Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describ...Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describes an iterative blind receiver consisting of a sequential Monte Carlo detector, a CFO estimator, and a compensator to reduce intercarrier interference. The framework is of low complexity due to the separation of tasks in a joint detection problem. In addition, the CFO estimator utilizes soft output of the sequential Monte Carlo detector, which reduces the information loss caused by hard decisions and can obtain the CFO estimate in only one OFDM symbol. Simulation results demonstrate the effectiveness of the algorithm.展开更多
水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪...水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪算法。首先对三频信号做线性调频Z变换(Chirp-Z Transform,CZT)得到多普勒先验值,然后利用OFDM符号中的空载波结合载波频偏(Carrier Frequency Offset,CFO)搜索补偿技术,把估计的最优CFO值转换为宽带多普勒因子,进而计算当前符号的加速度并预测下一符号的速度。通过更新加速度对预测值进行修正,实现每个OFDM符号的多普勒估计。数值仿真和湖试结果表明,文中算法不仅能有效跟踪多普勒的变化,在匀速和变速条件下都有较好的补偿性能,而且对帧结构设计要求低,对先验误差不敏感,有利于水声通信系统的工程实现。展开更多
针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频...针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。展开更多
Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5...Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.展开更多
针对脉冲噪声导致正交频分复用(orthogonal frequency division multiplexing,OFDM)水声通信系统误码率性能降低的问题,提出一种迭代脉冲噪声抑制与信道估计方法。首先,利用对称α稳定(symmetricαstable,SαS)分布对水下噪声进行建模,...针对脉冲噪声导致正交频分复用(orthogonal frequency division multiplexing,OFDM)水声通信系统误码率性能降低的问题,提出一种迭代脉冲噪声抑制与信道估计方法。首先,利用对称α稳定(symmetricαstable,SαS)分布对水下噪声进行建模,并通过实测噪声数据进行拟合验证。其次,基于脉冲噪声幅值较大的特性,利用切比雪夫不等式对基带接收信号实部和虚部分别进行脉冲噪声检测和抑制。同时,通过分析最小二乘(least squares,LS)信道估计算法估计误差的统计特性,提出自适应门限LS信道估计算法,减轻残余噪声对信道估计的影响。最后,结合估计的信道和译码结果重构噪声并进行脉冲噪声估计,实现迭代脉冲噪声抑制与信道估计。仿真结果表明,在不同程度脉冲噪声和实测噪声场景下,所提方法能够有效抑制脉冲噪声,显著降低OFDM系统误码率。展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2009AA01A345)the National Basic Research Program of China(Grant No.2011CB302702)the National Natural Science Foundation of China(Grant No.60932004)
文摘This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.
基金Supported by the Communication Department ofGeneral Staff (Project 916)
文摘Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR reduction method for Wireless-MAN(metropolitan area network)-OFDM system based on IEEE 802.16, which is over-sampling clipping arithmetic. Simulation and performance of the over-samples clipping's PAPR reduction capability, BER effect is given. The simulation indicates that the PAPR of at least 99.9% OFDM symbol is below 6dB after 2 Nyquist rate clipping, and the performance of BER has 1dB SNR(signal noise ratio) loss. The results prove that this method has better capacity to reducing PAPR. So it can be well used in WMAN-OFDM system.
文摘Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.
文摘To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.
基金National Natural Science Foundation ofChina(No.60 3 72 0 76)
文摘A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. On the basis of the existing non-orthogonal STC, frequency diversity is studied and a new non-orthogonal STFC is further designed. Monte-Carlo simulations show that the non-orthogonal STFC-OFDM has the advantage of large diversity order, high bandwidth efficiency and better BER performance when compared with the orthogonal STC/STFC-OFDM and non-orthogonal STC-OFDM systems.
文摘伴随铁路与道路建设的快速发展,移动通信需求日益增长,对通信稳定性及系统承载力等方面提出更为严苛的要求。同时,移动通信系统快速发展,长期演进进阶版(Long Term Evolution-Advance,LTE-A)技术得到广泛应用。文章着重探讨LTE-A和正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术如何在移动场景下精确估测信道质量以及增强接收设备的工作表现,为同领域的研究工作提供借鉴。
基金Supported by the Basic Research Foundation of Tsinghua Na-tional Laboratory for Information Science and Technology (TNList) the Major Program of the National Natural Science Foundation of China (No. 60496311)
文摘Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describes an iterative blind receiver consisting of a sequential Monte Carlo detector, a CFO estimator, and a compensator to reduce intercarrier interference. The framework is of low complexity due to the separation of tasks in a joint detection problem. In addition, the CFO estimator utilizes soft output of the sequential Monte Carlo detector, which reduces the information loss caused by hard decisions and can obtain the CFO estimate in only one OFDM symbol. Simulation results demonstrate the effectiveness of the algorithm.
文摘水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪算法。首先对三频信号做线性调频Z变换(Chirp-Z Transform,CZT)得到多普勒先验值,然后利用OFDM符号中的空载波结合载波频偏(Carrier Frequency Offset,CFO)搜索补偿技术,把估计的最优CFO值转换为宽带多普勒因子,进而计算当前符号的加速度并预测下一符号的速度。通过更新加速度对预测值进行修正,实现每个OFDM符号的多普勒估计。数值仿真和湖试结果表明,文中算法不仅能有效跟踪多普勒的变化,在匀速和变速条件下都有较好的补偿性能,而且对帧结构设计要求低,对先验误差不敏感,有利于水声通信系统的工程实现。
文摘针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024003)
文摘Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.
文摘针对脉冲噪声导致正交频分复用(orthogonal frequency division multiplexing,OFDM)水声通信系统误码率性能降低的问题,提出一种迭代脉冲噪声抑制与信道估计方法。首先,利用对称α稳定(symmetricαstable,SαS)分布对水下噪声进行建模,并通过实测噪声数据进行拟合验证。其次,基于脉冲噪声幅值较大的特性,利用切比雪夫不等式对基带接收信号实部和虚部分别进行脉冲噪声检测和抑制。同时,通过分析最小二乘(least squares,LS)信道估计算法估计误差的统计特性,提出自适应门限LS信道估计算法,减轻残余噪声对信道估计的影响。最后,结合估计的信道和译码结果重构噪声并进行脉冲噪声估计,实现迭代脉冲噪声抑制与信道估计。仿真结果表明,在不同程度脉冲噪声和实测噪声场景下,所提方法能够有效抑制脉冲噪声,显著降低OFDM系统误码率。