The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of...The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.展开更多
Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling scheme...Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling schemes of air cooling and water cooling are calculated respectively.For the structure I air cooling system,the influence of different number of heat sink on the maximum temperature rise and pressure drop of fluid channel is analyzed,and the parameters of heat sink are optimized.For the structure II air cooling system,the influence of setting fillet at the turn back of the fluid channel on the head loss in the fluid domain of the motor is analyzed,and the influence of different fillet radius on the head loss and the maximum temperature rise in the fluid domain is obtained.For the structure II water cooling system,the influence of different water flow speed on the maximum temperature rise of the motor is analyzed,and the influence of different assembly clearance of modular stator teeth and yoke on the maximum temperature rise of the motor is analyzed.The cooling effect and temperature rise distribution characteristics of the three cooling schemes are compared and analyzed.Finally,a water-cooled prototype is manufactured,and the temperature rise experiment is carried out,and the influence of the thermal deformation of fluid channel,stator yoke and stator teeth on the maximum temperature of the motor is analyzed.The results show that the calculated temperature field after considering the thermal deformation is closer to the experimental value,which verifies the accuracy of the calculation results,It also provides a reference for the selection and design of the cooling structure of the same type of PMSM electric roller.展开更多
Two turbine rotors with outer rim and without outer rim were designed to analyze the influence of outer rim of rotors on the performance of a turbodrill. Two 3D models of the turbine rotor with different structures we...Two turbine rotors with outer rim and without outer rim were designed to analyze the influence of outer rim of rotors on the performance of a turbodrill. Two 3D models of the turbine rotor with different structures were established by SolidWorks software. The numerical simulation analysis of the turbine with different rotor structures was carried out based on software of fluent and then the performance of them at different rotating speeds was obtained. The results show that the torque,pressure drop and hydraulic efficiency of the turbine rotor with outer rim are greater than that of the turbine rotor without outer rim. By comparing the turbine rotor with outer rim and without outer rim,its torque increases 20. 1%,pressure drop increases 8.7% and hydraulic efficiency increases 10.4% at the maximum efficiency point. The related research is of guiding significance to further optimization of turbine rotor structure.展开更多
To study the resistant mechanism and clinical significance of pseudomonas aeruginosa toβ- lactam antibiotics,the outer mem brane permeability rate of30 P.aeruginosa strains to5 β- lactam antibiotics was m easured ...To study the resistant mechanism and clinical significance of pseudomonas aeruginosa toβ- lactam antibiotics,the outer mem brane permeability rate of30 P.aeruginosa strains to5 β- lactam antibiotics was m easured and their production ofβ- lactamase and theβ- lactam ase genes they carried detected. Furthermore,the relationship between the perm eability,β- lactam ase and the clinical effects ofβ- lactam antibiotics was observed. By using 1 4C- penicillin and liquid- scintillant isotope assay,the affinity of penicillin binding proteins(PBPs) was m easured and their roles in the resistant m echanism studied.Itwas revealed thatthe perm eability rate was higher in sensitive strains than in resistantones(P<0 .0 5 ) .All strains harbored1- 4 β- lactamase genes and produced β- lactam ase.Higher permeability rate and higher degree of stability toβ- lactamase indicated better clinical therapeutic effects. The affinity of PBPs changed little without regard to the perm eability andβ- lactam ase. These results suggested that the permeability of outer mem brane andβ- lacta- mase,but not PBPs,played im portant roles in the resistant mechanism of P. aeruginosa toβ- lac- tam antibiotics and affected the clinical therapeutic effectiveness of som e patients.展开更多
In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
Abstract: A micro - power consumption non - contact temperature measuring instrument for big rotor is introduced. As it solves very well the signal coupling under high speed rotation and power supply problem for probe...Abstract: A micro - power consumption non - contact temperature measuring instrument for big rotor is introduced. As it solves very well the signal coupling under high speed rotation and power supply problem for probe, the instrument can realize persistent on - line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.展开更多
基金supported by National Science Foundation of China(Grant No.51705306).
文摘The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.
基金This work has been supported by the National Natural Science Foundation of China(51907129)Project Supported by Department of Science and Technology of Liaoning Province(2021-MS-236).
文摘Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling schemes of air cooling and water cooling are calculated respectively.For the structure I air cooling system,the influence of different number of heat sink on the maximum temperature rise and pressure drop of fluid channel is analyzed,and the parameters of heat sink are optimized.For the structure II air cooling system,the influence of setting fillet at the turn back of the fluid channel on the head loss in the fluid domain of the motor is analyzed,and the influence of different fillet radius on the head loss and the maximum temperature rise in the fluid domain is obtained.For the structure II water cooling system,the influence of different water flow speed on the maximum temperature rise of the motor is analyzed,and the influence of different assembly clearance of modular stator teeth and yoke on the maximum temperature rise of the motor is analyzed.The cooling effect and temperature rise distribution characteristics of the three cooling schemes are compared and analyzed.Finally,a water-cooled prototype is manufactured,and the temperature rise experiment is carried out,and the influence of the thermal deformation of fluid channel,stator yoke and stator teeth on the maximum temperature of the motor is analyzed.The results show that the calculated temperature field after considering the thermal deformation is closer to the experimental value,which verifies the accuracy of the calculation results,It also provides a reference for the selection and design of the cooling structure of the same type of PMSM electric roller.
基金National Natural Science Foundation of the Country Project(51704034)Major National Special topics(2016ZX05038-002-LH001)Zhonghai Petroleum(China)Co.Ltd.Zhanjiang Branch Project(CCL2017ZJFN2272)
文摘Two turbine rotors with outer rim and without outer rim were designed to analyze the influence of outer rim of rotors on the performance of a turbodrill. Two 3D models of the turbine rotor with different structures were established by SolidWorks software. The numerical simulation analysis of the turbine with different rotor structures was carried out based on software of fluent and then the performance of them at different rotating speeds was obtained. The results show that the torque,pressure drop and hydraulic efficiency of the turbine rotor with outer rim are greater than that of the turbine rotor without outer rim. By comparing the turbine rotor with outer rim and without outer rim,its torque increases 20. 1%,pressure drop increases 8.7% and hydraulic efficiency increases 10.4% at the maximum efficiency point. The related research is of guiding significance to further optimization of turbine rotor structure.
基金This project was supported by a grant from Natural Sci-ences Foundation of China(No. 395 70 84 6 )
文摘To study the resistant mechanism and clinical significance of pseudomonas aeruginosa toβ- lactam antibiotics,the outer mem brane permeability rate of30 P.aeruginosa strains to5 β- lactam antibiotics was m easured and their production ofβ- lactamase and theβ- lactam ase genes they carried detected. Furthermore,the relationship between the perm eability,β- lactam ase and the clinical effects ofβ- lactam antibiotics was observed. By using 1 4C- penicillin and liquid- scintillant isotope assay,the affinity of penicillin binding proteins(PBPs) was m easured and their roles in the resistant m echanism studied.Itwas revealed thatthe perm eability rate was higher in sensitive strains than in resistantones(P<0 .0 5 ) .All strains harbored1- 4 β- lactamase genes and produced β- lactam ase.Higher permeability rate and higher degree of stability toβ- lactamase indicated better clinical therapeutic effects. The affinity of PBPs changed little without regard to the perm eability andβ- lactam ase. These results suggested that the permeability of outer mem brane andβ- lacta- mase,but not PBPs,played im portant roles in the resistant mechanism of P. aeruginosa toβ- lac- tam antibiotics and affected the clinical therapeutic effectiveness of som e patients.
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
文摘Abstract: A micro - power consumption non - contact temperature measuring instrument for big rotor is introduced. As it solves very well the signal coupling under high speed rotation and power supply problem for probe, the instrument can realize persistent on - line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.