With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ...With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.展开更多
Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time sa...Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time satisfying minimum reliability levels for the specifi ed performance criteria. Total costs include those for construction and structural damage repairs, those associated with non-structural components and the social costs of economic losses, injuries and fatalities. This paper presents a general framework to approach this problem, using a numerical optimization strategy and incorporating the use of neural networks for the evaluation of dynamic responses and the reliability levels achieved for a given set of design parameters. The strategy is applied to an example of a three-story offi ce building. The results show the importance of considering the social costs, and the optimum failure probabilities when minimum reliability constraints are not taken into account.展开更多
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi...Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.展开更多
Purpose: This study aims to present the key systemic changes in the Polish book evaluation model to focus on the publisher list, as inspired by the Norwegian Model. Design/methodology/approach: In this study we recons...Purpose: This study aims to present the key systemic changes in the Polish book evaluation model to focus on the publisher list, as inspired by the Norwegian Model. Design/methodology/approach: In this study we reconstruct the framework of the 2010 and 2018 models of book evaluation in Poland within the performance-based research funding system. Findings: For almost 20 years the book evaluation system in Poland has been based on the verification of various technical criteria(e.g. length of the book). The new 2018 model is based on the principle of prestige inheritance(a book is worth as much as its publisher is) and is inspired by the publisher list used in the Norwegian Model. In this paper, we argue that this solution may be a more balanced policy instrument than the previous 2010 model in which neither the quality of the publisher nor the quality of the book played any role in the evaluation.Research limitations: We work from the framework of the 2018 model of book evaluation specified in the law on higher education and science from 20 July 2018, as implementation acts are not available yet. Practical implications: This study may provide a valuable point of reference on how structural reforms in the research evaluation model were implemented on a country level. The results of this study may be interesting to policy makers, stakeholders and researchers focused on science policy. Originality/value: This is the very first study that presents the new framework of the Polish research evaluation model and policy instruments for scholarly book evaluation. We describe what motivated policy makers to change the book evaluation model, and what arguments were explicitly raised to argue for the new solution.展开更多
This paper provides a summary of the objectives and principles which underpin the 2004 edition of the New Zealand earthquake design standard, AS/NZS 1170 Part 5. As with many modern earthquake design standards, the Ne...This paper provides a summary of the objectives and principles which underpin the 2004 edition of the New Zealand earthquake design standard, AS/NZS 1170 Part 5. As with many modern earthquake design standards, the New Zealand earthquake design standard recognizes that earthquake resistant design that only addresses life safety goals without addressing both operational continuity of essential facilities and damage control, falls short of public expectations. Such standards not longer meet societal expectations. The paper outlines how these issues have been addressed within New Zealand, and some of the issues addressed when preparing appendices to the standard to provide guidance for materials standard writers to ensure consistency with the proposed approach. Recognizing the significance of non-structural components and parts of buildings in both damage control and operational continuity has been an important step forward in attaining the performance levels required.展开更多
Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-ba...Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-based product design is proposed, which can help to create, store, manipulate and exchange intelligent resource description information for applications, tools and systems in Interact-based product design. A method to integrate multiple intelligent resources to fulfill a complex product design and analysis via lntemet is also proposed. A real project for improving the bearing system design of a turbo-expander with many intelligent resources in prominent universities is presented as a case study.展开更多
In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performan...In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.展开更多
The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and e...The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.展开更多
Background: While global efforts have led to a decline in maternal and neonatal mortality, Sub-Saharan Africa continues to face disproportionately high rates, remaining far above the Sustainable Development Goal (SDG)...Background: While global efforts have led to a decline in maternal and neonatal mortality, Sub-Saharan Africa continues to face disproportionately high rates, remaining far above the Sustainable Development Goal (SDG) targets. In Kenya, as the 2030 SDG deadline approaches, the gap in maternal, neonatal, and child health services remains significant. Addressing these challenges is critical to improving Maternal, Neonatal, and Child Health (MNCH) outcomes. Objective: This study explores how integration of digital health innovations into the MNCH chain of service delivery affects the quality of MNCH care within the selected PHC settings in Kajiado, Kisii and Migori Counties in Kenya. Methodology: This Quasi-experimental study was conducted 1-year post-intervention targeting a total of 482 pregnant women from intervention and control sites in Kisii, Kajiado and Migori Counties, Kenya. Data was analysed using Chi-Square test comparing frequencies between intervention and control groups when both variables are categorical. Results: Pre-intervention data revealed an increase in first ANC coverage within first trimester, from 167 to 278 post-intervention (p Linda mama social health insurance registrations increased from 1008 to 1135. At the intervention sites, 938 pregnant women got screened by midwives using portable mobile Obstetric Point-of-Care Ultrasound (OPOCUS) technology compared to the 27 cases that accessed ultrasound services in the noncontiguous control sites. The pilot sites midwives earned themselves an incentive income totaling Ksh 400,000 while the Community Health Promoters (CHPs) who created demand for OPOCUS earned an incentive income totaling Ksh 327,195 from their IGAs that were project supported. There was a significant increase in mobile health application usage and e-resources access for health information in the intervention group (p services and improved adherence to referrals. Conclusion: The success of digital health interventions in improving health-seeking behaviour, knowledge, and service uptake highlights the potential of such innovations to strengthen health systems and achieve universal health coverage. We recommend the intervention for a scale-up in other PHC settings in Kenya.展开更多
This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) ...This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) fields. The simple method of PBEE encompasses three areas of seismic risk which include seismic hazard, structural analysis, and loss models. The aim of the PBEE process, entitled as FEMA P-58, is to present essential data needed to make a rational decision regarding predicted performance, where various sources of uncertainties are involved. In developing countries, the lack of suitable real ground motions corresponding to site characteristics and seismicity particularly for larger intensities and the scarcity of demands, which makes it hard to identify the seismic capacity of a structure, is the main our motivation of using the FEMA method. In this paper, the method of FEMA P-58 is investigated, in terms of available tools and required data, in such a way that it will be applicable for developing countries which are located in high seismic hazard zones. To achieve this goal, three steel moment-resisting buildings with low and high ductility, and three steel braced-frame buildings are selected as case studies. The mean annual loss is estimated by the available software, Performance Assessment Calculation Tool (PACT). The achieved results, i.e. the loss curves, will provide a simple means by which the engineers can quantify and communicate seismic performance to other stakeholders. In the case study buildings, the braced one has less annual losses in comparison with other investigated cases, and the structure with high ductility can be considered as the next ones. Execution cost of each building should be considered by contractors. Also, seismic fragility curves of structures for various limit states, as well, the corresponding loss models are identified as the most essential data towards application of the investigated PBEE process.展开更多
As the mining industry continues to expand and international oil prices increase,more rigorous demands are being placed on the design of mining equipment.Given this,there is an urgent need to develop new power-driven ...As the mining industry continues to expand and international oil prices increase,more rigorous demands are being placed on the design of mining equipment.Given this,there is an urgent need to develop new power-driven mining equipment to solve the problems of high energy consumption and insufficient power coupling of current equipment.This study proposed a design of a hybrid power system for underground Load Haul Dump(LHD).The proposed design integrated Quality Function Deployment(QFD)and Theory of Inventive Problem Solving(TRIZ).It identified 7 user requirements and 10 related technical features,formulated 11 innovative design solutions,and ultimately adopting an electric drive hybrid power scheme.This scheme effectively addressesd power transmission coupling problems and improve the efficiency of loaders.A 6 m³hybrid power loader prototype has been developed,which reduces operational energy consumption and advances the electrification and green,low-carbon evolution of mining equipment.展开更多
Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into...Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into neuroscience, proposing the concept of combinatorial neural codes. And it was further studied in depth using algebraic methods by C. Curto. In this paper, we construct a class of combinatorial neural codes with special properties based on classical combinatorial structures such as orthogonal Latin rectangle, disjoint Steiner systems, groupable designs and transversal designs. These neural codes have significant weight distribution properties and large minimum distances, and are thus valuable for potential applications in information representation and neuroscience. This study provides new ideas for the construction method and property analysis of combinatorial neural codes, and enriches the study of algebraic coding theory.展开更多
A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order t...A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order to reduce the use of chemical spices in the preparation of different dishes. The Design of Experiments (DOE) methodology was used for the formulation of the spices and their physicochemical, nutritional and sensory characteristics were evaluated by standardized and standard methods. The results obtained showed lipid contents (g/100 g DM) ranging from 10.41 ± 0.26 to 15.64 ± 0.68, total sugars from 4.39 ± 0.32 to 5.46 ± 0.31, protein from 3.65 ± 0.17 to 12.04 ± 0.35 and ash from 5.83 ± 0.01 to 7.02 ± 0.01. The polyphenol content ranged from 9.09 ± 1.60 to 11.33 ± 0.90, and the flavonoid content ranged from 0.65 ± 0.03 to 1.08 ± 0.13. The sensory analysis carried out showed that the spices have generally satisfactory organoleptic characteristics. These results constitute new information in the diet of populations and are an alternative to the chemical spices used in their cooking.展开更多
Outdoor jackets are engineered to protect against extreme weather while ensuring comfort and safety. Key to this protection is the thermal properties, achieved through insulation materials like down feathers and synth...Outdoor jackets are engineered to protect against extreme weather while ensuring comfort and safety. Key to this protection is the thermal properties, achieved through insulation materials like down feathers and synthetic fibers, which trap heat and minimize heat loss. Resistance to wind, rain, and snow is provided by waterproof and windproof fabrics, while breathability allows moisture to escape, maintaining a comfortable microclimate. Air permeability and water resistance are essential for achieving this balance. This study examines two outdoor jacket prototypes with six material layers each. The outer layer (Layer 1) consists of 100% polyester coated with polyurethane for waterproofing. Inner layers (Layers 2, 3, and 6) use wool/cotton and wool/polyamide blends, offering insulation and moisture-wicking properties. Down feathers are used as the filling material, providing excellent warmth. Advanced materials like graphene and silver honeycomb fabrics were included to enhance thermal conductivity and regulate heat transfer. Performance testing focused on thermal conductivity, comfort (water and air permeability), and mechanical properties like tensile strength and tear resistance. Tests also assessed spray application and fastness to evaluate durability under environmental exposure. Results showed that jackets with silver-infused honeycomb fabrics had superior thermal conductivity, enabling better heat regulation and comfort in harsh conditions. The findings highlight the advantages of integrating silver honeycomb fabrics into outdoor jackets. These materials enhance insulation, thermal regulation, and overall comfort, making them ideal for high-performance designs. Incorporating such fabrics ensures functionality, durability, and user protection in extreme environments.展开更多
This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and e...This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and enhance the gross national product. The process starts by collecting low-cost sheep fleece from farms and processed via a production line, including scouring, plucking, carding, thermal bonding, and packing. The design process involves determining an optimal location, infrastructure, staffing, machinery, environmental impact, and utilities. A final economic analysis is undertaken to estimate the product’s cost, selling price, and break-even point based on the anticipated capital and operational costs. The plant is intended to process 6778 tons of sheep wool annually. The study suggests that Mafraq Industrial City is a perfect location for the plant, and purchasing land and structures is the optimal option. The projected capital cost is 1,416,679 USD, while the anticipated operational costs amount to 3,206,275 USD. Insulation material production is estimated to be 114,756 m3 annually. The material may be manufactured into 1 m wide, 0.05 m thick sheets for 2.02 USD per square meter. Thus, for a 10-year plant, a 2.47 USD/m2 selling price breaks even in one year.展开更多
This paper delves into the baseline design under the baseline parameterization model in experimental design, focusing on the relationship between the K-aberration criterion and the word length pattern (WLP) of regular...This paper delves into the baseline design under the baseline parameterization model in experimental design, focusing on the relationship between the K-aberration criterion and the word length pattern (WLP) of regular two-level designs. The paper provides a detailed analysis of the relationship between K5and the WLP for regular two-level designs with resolution t=3, and proposes corresponding theoretical results. These results not only theoretically reveal the connection between the orthogonal parameterization model and the baseline parameterization model but also provide theoretical support for finding the K-aberration optimal regular two-level baseline designs. It demonstrates how to apply these theories to evaluate and select the optimal experimental designs. In practical applications, experimental designers can utilize the theoretical results of this paper to quickly assess and select regular two-level baseline designs with minimal K-aberration by analyzing the WLP of the experimental design. This allows for the identification of key factors that significantly affect the experimental outcomes without frequently changing the factor levels, thereby maximizing the benefits of the experiment.展开更多
This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysi...This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.展开更多
This study examines the application of the Understanding by Design(UbD)approach to enhance students’cognitive,affective,and psychomotor learning domains,as well as their intercultural communication competence,in the ...This study examines the application of the Understanding by Design(UbD)approach to enhance students’cognitive,affective,and psychomotor learning domains,as well as their intercultural communication competence,in the Introduction to Chinese Culture course.UbD,a curriculum design framework emphasizing deep understanding over rote memorization,employs a“backward design”process to help students achieve a profound comprehension of Chinese culture and its modern implications.Through this approach,students also develop critical intercultural communication skills.The study offers helpful strategies for integrating English language teaching with Chinese cultural education,providing practical insights for curriculum development that bridges linguistic and cultural learning.展开更多
According to the announcement of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,the risk of microbial items in frozen drinks is very high,and it is diffic...According to the announcement of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,the risk of microbial items in frozen drinks is very high,and it is difficult to improve.For example,a recent spot check showed that 42 kinds of frozen drinks had microbial indicators exceeding the standard.Part of the reason is that the design of the production workshop is not conducive to the rapid removal of production water,resulting in continuous moisture throughout the workshop,which provides a breeding bed for microorganisms to breed and then contaminates the product.Therefore,research is carried out from the design point of view to fundamentally reduce the moisture in the workshop and build a dry workshop for frozen drinks production,so as to effectively reduce the risk of microbial contamination of frozen drinks.展开更多
文摘With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
文摘Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time satisfying minimum reliability levels for the specifi ed performance criteria. Total costs include those for construction and structural damage repairs, those associated with non-structural components and the social costs of economic losses, injuries and fatalities. This paper presents a general framework to approach this problem, using a numerical optimization strategy and incorporating the use of neural networks for the evaluation of dynamic responses and the reliability levels achieved for a given set of design parameters. The strategy is applied to an example of a three-story offi ce building. The results show the importance of considering the social costs, and the optimum failure probabilities when minimum reliability constraints are not taken into account.
文摘Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.
基金supported by the DIALOG Program[grant name“Research into Excellence Patterns in Science and Art”]financed by the Ministry of Science and Higher Education in Poland
文摘Purpose: This study aims to present the key systemic changes in the Polish book evaluation model to focus on the publisher list, as inspired by the Norwegian Model. Design/methodology/approach: In this study we reconstruct the framework of the 2010 and 2018 models of book evaluation in Poland within the performance-based research funding system. Findings: For almost 20 years the book evaluation system in Poland has been based on the verification of various technical criteria(e.g. length of the book). The new 2018 model is based on the principle of prestige inheritance(a book is worth as much as its publisher is) and is inspired by the publisher list used in the Norwegian Model. In this paper, we argue that this solution may be a more balanced policy instrument than the previous 2010 model in which neither the quality of the publisher nor the quality of the book played any role in the evaluation.Research limitations: We work from the framework of the 2018 model of book evaluation specified in the law on higher education and science from 20 July 2018, as implementation acts are not available yet. Practical implications: This study may provide a valuable point of reference on how structural reforms in the research evaluation model were implemented on a country level. The results of this study may be interesting to policy makers, stakeholders and researchers focused on science policy. Originality/value: This is the very first study that presents the new framework of the Polish research evaluation model and policy instruments for scholarly book evaluation. We describe what motivated policy makers to change the book evaluation model, and what arguments were explicitly raised to argue for the new solution.
文摘This paper provides a summary of the objectives and principles which underpin the 2004 edition of the New Zealand earthquake design standard, AS/NZS 1170 Part 5. As with many modern earthquake design standards, the New Zealand earthquake design standard recognizes that earthquake resistant design that only addresses life safety goals without addressing both operational continuity of essential facilities and damage control, falls short of public expectations. Such standards not longer meet societal expectations. The paper outlines how these issues have been addressed within New Zealand, and some of the issues addressed when preparing appendices to the standard to provide guidance for materials standard writers to ensure consistency with the proposed approach. Recognizing the significance of non-structural components and parts of buildings in both damage control and operational continuity has been an important step forward in attaining the performance levels required.
基金This project is supported by National Natural Science Foundation of China (No.59990472)Doctor Foundation of Ministry of Education of China (No.20030698005, No.20050698016).
文摘Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-based product design is proposed, which can help to create, store, manipulate and exchange intelligent resource description information for applications, tools and systems in Interact-based product design. A method to integrate multiple intelligent resources to fulfill a complex product design and analysis via lntemet is also proposed. A real project for improving the bearing system design of a turbo-expander with many intelligent resources in prominent universities is presented as a case study.
文摘In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.
基金Chinese National Natural Science Foundation with the grant No.59895410the China Basic Research and Development Project:the Mechanism and Prediction of the Strong Earthquake of the Continental under the Grant No.95130603
文摘The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.
文摘Background: While global efforts have led to a decline in maternal and neonatal mortality, Sub-Saharan Africa continues to face disproportionately high rates, remaining far above the Sustainable Development Goal (SDG) targets. In Kenya, as the 2030 SDG deadline approaches, the gap in maternal, neonatal, and child health services remains significant. Addressing these challenges is critical to improving Maternal, Neonatal, and Child Health (MNCH) outcomes. Objective: This study explores how integration of digital health innovations into the MNCH chain of service delivery affects the quality of MNCH care within the selected PHC settings in Kajiado, Kisii and Migori Counties in Kenya. Methodology: This Quasi-experimental study was conducted 1-year post-intervention targeting a total of 482 pregnant women from intervention and control sites in Kisii, Kajiado and Migori Counties, Kenya. Data was analysed using Chi-Square test comparing frequencies between intervention and control groups when both variables are categorical. Results: Pre-intervention data revealed an increase in first ANC coverage within first trimester, from 167 to 278 post-intervention (p Linda mama social health insurance registrations increased from 1008 to 1135. At the intervention sites, 938 pregnant women got screened by midwives using portable mobile Obstetric Point-of-Care Ultrasound (OPOCUS) technology compared to the 27 cases that accessed ultrasound services in the noncontiguous control sites. The pilot sites midwives earned themselves an incentive income totaling Ksh 400,000 while the Community Health Promoters (CHPs) who created demand for OPOCUS earned an incentive income totaling Ksh 327,195 from their IGAs that were project supported. There was a significant increase in mobile health application usage and e-resources access for health information in the intervention group (p services and improved adherence to referrals. Conclusion: The success of digital health interventions in improving health-seeking behaviour, knowledge, and service uptake highlights the potential of such innovations to strengthen health systems and achieve universal health coverage. We recommend the intervention for a scale-up in other PHC settings in Kenya.
文摘This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) fields. The simple method of PBEE encompasses three areas of seismic risk which include seismic hazard, structural analysis, and loss models. The aim of the PBEE process, entitled as FEMA P-58, is to present essential data needed to make a rational decision regarding predicted performance, where various sources of uncertainties are involved. In developing countries, the lack of suitable real ground motions corresponding to site characteristics and seismicity particularly for larger intensities and the scarcity of demands, which makes it hard to identify the seismic capacity of a structure, is the main our motivation of using the FEMA method. In this paper, the method of FEMA P-58 is investigated, in terms of available tools and required data, in such a way that it will be applicable for developing countries which are located in high seismic hazard zones. To achieve this goal, three steel moment-resisting buildings with low and high ductility, and three steel braced-frame buildings are selected as case studies. The mean annual loss is estimated by the available software, Performance Assessment Calculation Tool (PACT). The achieved results, i.e. the loss curves, will provide a simple means by which the engineers can quantify and communicate seismic performance to other stakeholders. In the case study buildings, the braced one has less annual losses in comparison with other investigated cases, and the structure with high ductility can be considered as the next ones. Execution cost of each building should be considered by contractors. Also, seismic fragility curves of structures for various limit states, as well, the corresponding loss models are identified as the most essential data towards application of the investigated PBEE process.
文摘As the mining industry continues to expand and international oil prices increase,more rigorous demands are being placed on the design of mining equipment.Given this,there is an urgent need to develop new power-driven mining equipment to solve the problems of high energy consumption and insufficient power coupling of current equipment.This study proposed a design of a hybrid power system for underground Load Haul Dump(LHD).The proposed design integrated Quality Function Deployment(QFD)and Theory of Inventive Problem Solving(TRIZ).It identified 7 user requirements and 10 related technical features,formulated 11 innovative design solutions,and ultimately adopting an electric drive hybrid power scheme.This scheme effectively addressesd power transmission coupling problems and improve the efficiency of loaders.A 6 m³hybrid power loader prototype has been developed,which reduces operational energy consumption and advances the electrification and green,low-carbon evolution of mining equipment.
文摘Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into neuroscience, proposing the concept of combinatorial neural codes. And it was further studied in depth using algebraic methods by C. Curto. In this paper, we construct a class of combinatorial neural codes with special properties based on classical combinatorial structures such as orthogonal Latin rectangle, disjoint Steiner systems, groupable designs and transversal designs. These neural codes have significant weight distribution properties and large minimum distances, and are thus valuable for potential applications in information representation and neuroscience. This study provides new ideas for the construction method and property analysis of combinatorial neural codes, and enriches the study of algebraic coding theory.
文摘A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order to reduce the use of chemical spices in the preparation of different dishes. The Design of Experiments (DOE) methodology was used for the formulation of the spices and their physicochemical, nutritional and sensory characteristics were evaluated by standardized and standard methods. The results obtained showed lipid contents (g/100 g DM) ranging from 10.41 ± 0.26 to 15.64 ± 0.68, total sugars from 4.39 ± 0.32 to 5.46 ± 0.31, protein from 3.65 ± 0.17 to 12.04 ± 0.35 and ash from 5.83 ± 0.01 to 7.02 ± 0.01. The polyphenol content ranged from 9.09 ± 1.60 to 11.33 ± 0.90, and the flavonoid content ranged from 0.65 ± 0.03 to 1.08 ± 0.13. The sensory analysis carried out showed that the spices have generally satisfactory organoleptic characteristics. These results constitute new information in the diet of populations and are an alternative to the chemical spices used in their cooking.
文摘Outdoor jackets are engineered to protect against extreme weather while ensuring comfort and safety. Key to this protection is the thermal properties, achieved through insulation materials like down feathers and synthetic fibers, which trap heat and minimize heat loss. Resistance to wind, rain, and snow is provided by waterproof and windproof fabrics, while breathability allows moisture to escape, maintaining a comfortable microclimate. Air permeability and water resistance are essential for achieving this balance. This study examines two outdoor jacket prototypes with six material layers each. The outer layer (Layer 1) consists of 100% polyester coated with polyurethane for waterproofing. Inner layers (Layers 2, 3, and 6) use wool/cotton and wool/polyamide blends, offering insulation and moisture-wicking properties. Down feathers are used as the filling material, providing excellent warmth. Advanced materials like graphene and silver honeycomb fabrics were included to enhance thermal conductivity and regulate heat transfer. Performance testing focused on thermal conductivity, comfort (water and air permeability), and mechanical properties like tensile strength and tear resistance. Tests also assessed spray application and fastness to evaluate durability under environmental exposure. Results showed that jackets with silver-infused honeycomb fabrics had superior thermal conductivity, enabling better heat regulation and comfort in harsh conditions. The findings highlight the advantages of integrating silver honeycomb fabrics into outdoor jackets. These materials enhance insulation, thermal regulation, and overall comfort, making them ideal for high-performance designs. Incorporating such fabrics ensures functionality, durability, and user protection in extreme environments.
文摘This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and enhance the gross national product. The process starts by collecting low-cost sheep fleece from farms and processed via a production line, including scouring, plucking, carding, thermal bonding, and packing. The design process involves determining an optimal location, infrastructure, staffing, machinery, environmental impact, and utilities. A final economic analysis is undertaken to estimate the product’s cost, selling price, and break-even point based on the anticipated capital and operational costs. The plant is intended to process 6778 tons of sheep wool annually. The study suggests that Mafraq Industrial City is a perfect location for the plant, and purchasing land and structures is the optimal option. The projected capital cost is 1,416,679 USD, while the anticipated operational costs amount to 3,206,275 USD. Insulation material production is estimated to be 114,756 m3 annually. The material may be manufactured into 1 m wide, 0.05 m thick sheets for 2.02 USD per square meter. Thus, for a 10-year plant, a 2.47 USD/m2 selling price breaks even in one year.
文摘This paper delves into the baseline design under the baseline parameterization model in experimental design, focusing on the relationship between the K-aberration criterion and the word length pattern (WLP) of regular two-level designs. The paper provides a detailed analysis of the relationship between K5and the WLP for regular two-level designs with resolution t=3, and proposes corresponding theoretical results. These results not only theoretically reveal the connection between the orthogonal parameterization model and the baseline parameterization model but also provide theoretical support for finding the K-aberration optimal regular two-level baseline designs. It demonstrates how to apply these theories to evaluate and select the optimal experimental designs. In practical applications, experimental designers can utilize the theoretical results of this paper to quickly assess and select regular two-level baseline designs with minimal K-aberration by analyzing the WLP of the experimental design. This allows for the identification of key factors that significantly affect the experimental outcomes without frequently changing the factor levels, thereby maximizing the benefits of the experiment.
基金Chongqing Engineering University Undergraduate Innovation and Entrepreneurship Training Program Project:Wireless Fire Automatic Alarm System(Project No.:CXCY2024017)Chongqing Municipal Education Commission Science and Technology Research Project:Development and Research of Chongqing Wireless Fire Automatic Alarm System(Project No.:KJQN202401906)。
文摘This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.
基金The 2022 Guangdong Provincial Higher Education Teaching Quality and Reform Project“Research and Practice of English Teaching Integrating Ideological and Political Education into the Introduction to Chinese Culture Course Based on UbD Theory”。
文摘This study examines the application of the Understanding by Design(UbD)approach to enhance students’cognitive,affective,and psychomotor learning domains,as well as their intercultural communication competence,in the Introduction to Chinese Culture course.UbD,a curriculum design framework emphasizing deep understanding over rote memorization,employs a“backward design”process to help students achieve a profound comprehension of Chinese culture and its modern implications.Through this approach,students also develop critical intercultural communication skills.The study offers helpful strategies for integrating English language teaching with Chinese cultural education,providing practical insights for curriculum development that bridges linguistic and cultural learning.
文摘According to the announcement of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,the risk of microbial items in frozen drinks is very high,and it is difficult to improve.For example,a recent spot check showed that 42 kinds of frozen drinks had microbial indicators exceeding the standard.Part of the reason is that the design of the production workshop is not conducive to the rapid removal of production water,resulting in continuous moisture throughout the workshop,which provides a breeding bed for microorganisms to breed and then contaminates the product.Therefore,research is carried out from the design point of view to fundamentally reduce the moisture in the workshop and build a dry workshop for frozen drinks production,so as to effectively reduce the risk of microbial contamination of frozen drinks.