Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, mini...Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.展开更多
For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inv...For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.展开更多
This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry...This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach.展开更多
To address the insufficient stiffness of the V-shaped reinforced concrete folded plate structure and its construction process causing environmental pollution,a novel assembled monolithic spherical-shaped reinforced co...To address the insufficient stiffness of the V-shaped reinforced concrete folded plate structure and its construction process causing environmental pollution,a novel assembled monolithic spherical-shaped reinforced concrete ribbed folded plate structure(AMRRFS)was proposed.The advantages of AMRRFS are that its construction process is environmentally friendly while it also exhibits great stability and rigidity.Therefore,an experimental and numerical investigation were conducted on the AMRRFS to investigate its mechanical properties.In addition,the parametric analysis of the AMRRFS was conducted,and some design recommendations were proposed.Under the design load,the experimental findings revealed that AMRRFS possessed excellent mechanical properties.During the overloading phase,the interface between the in situ casting area and the prefabrication area was severely damaged,leading to the loss of the structure’s ability to bear loads.The outcomes from the finite element simulations of AMRRFS closely mirrored the results of the experimental investigation.Based on the parametric analysis,it was recommended that the height of the AMRRFS,the height of the ribs,and the height of the secondary ridge beams shall be 1/7–1/5,1/65–1/50,and 1/34–1/30 of the span,and that the minimum reinforcing ratio for all types of plates shall exceed 1.0%.展开更多
The conventional admittance approach utilizing statistical evaluation metrics offers limited information about the damage location,especially when damage introduces nonlinearities in admittance features.This study pro...The conventional admittance approach utilizing statistical evaluation metrics offers limited information about the damage location,especially when damage introduces nonlinearities in admittance features.This study proposes a novel automated damage localization method for plate-like structures based on deep learning of raw admittance signals.A one-dimensional(1D)convolutional neural network(CNN)-based model is designed to automate processing of raw admittance response and prediction of damage probabilities across multiple locations in a monitored structure.Raw admittance data set is augmented with white noise to simulate realistic measurement conditions.Stratified K-fold cross-validation technique is employed for training and testing the network.The experimental validation of the proposed method shows that the proposed method can accurately identify the state and damage location in the plate with an average accuracy of 98%.Comparing with established 1D CNN models reveals superior performance of the proposed method,with significantly lower testing error.The proposed method exhibits the ability to directly handle raw electromechanical admittance responses and extract optimal features,overcoming limitations associated with traditional piezoelectric admittance approaches.By eliminating the need for signal preprocessing,this method holds promise for real-time damage monitoring of plate structures.展开更多
A topology optimization approach for designing the layout of plate structures is proposed in this article.In this approach,structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory,and s...A topology optimization approach for designing the layout of plate structures is proposed in this article.In this approach,structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory,and structural topology is described explicitly by a set of moving morphable components.Compared to the existing treatments where structural topology is generally described in an implicit manner,the adopted explicit geometry/layout description has demonstrated its advantages on several aspects.Firstly,the number of design variables is reduced substantially.Secondly,the obtained optimized designs are pure black-and-white and contain no gray regions.Besides,numerical experiments show that the use of Kirchhoff plate element helps save 95-99%computational time,compared with traditional treatments where solid elements are used for finite element analysis.Moreover the accuracy of the proposed method is also validated through a comparison with the corresponding theoretical solutions.Several numerical examples are also provided to demonstrate the effectiveness of the proposed approach.展开更多
The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This m...The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering.展开更多
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, conti...The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.展开更多
In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary el...In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.展开更多
ZSM-5 plates with a perpendicular intergrowth structure was synthesized by using a simple amine as the structure directing agent under hydrothermal conditions,in which the mother plate and the perpendicularly standing...ZSM-5 plates with a perpendicular intergrowth structure was synthesized by using a simple amine as the structure directing agent under hydrothermal conditions,in which the mother plate and the perpendicularly standing plates oriented along the(010)and(100)planes of MFI crystals,respectively.During the crystallization process,the mother plate was initially formed on the surface of the amorphous solid gel,while a set of parallel plates perpendicularly grew on its surface,via a homogeneous nucleation mechanism.The mother plate and the perpendicular plates had a similar thickness of 100-200 nm and were characterized by considerably shortened straight and zigzag 10 member ring pores,respectively.This unique intergrowth structure greatly facilitated the diffusion of the reactive molecules in HZSM-5 crystals during methanol conversion to hydrocarbons.展开更多
To further understand the dynamic deformation and impact resistance of thin-plate hull structure under impulse wave,the deformation of multi-layer steel plates under underwater impulsive loading has been studied by AU...To further understand the dynamic deformation and impact resistance of thin-plate hull structure under impulse wave,the deformation of multi-layer steel plates under underwater impulsive loading has been studied by AUTODYN V6.1.In order to verify the validity of numerical methods,the experimental results are compared with the simulation results.The multi-layer plate types include 1 mm + 3 mm,2 mm + 2 mm,3 mm + 1 mm double-layer,and 4 mm monolayer annealed 304 stainless steel plates.Each type of target plates has four flyer plate's velocities.There are 150,200,250 m /s and 300 m /s.The pressure wave histories in water and deformation of specimens have been predicted and measured by numerical simulations.The simulation results demonstrate that the protective capacity of 2mm + 2mm double-layer annealed 304 stainless steel plates is the best one in this velocity range of flyer plate,as the integral deformation is the smallest among the four structure types.展开更多
The aim of this paper is to develop computational models for the ultimate compressive strength analysis of stiffened plate panels with nonuniform thickness.Modeling welding-induced initial deformations and residual st...The aim of this paper is to develop computational models for the ultimate compressive strength analysis of stiffened plate panels with nonuniform thickness.Modeling welding-induced initial deformations and residual stresses was presented with the measured data.Three methods,i.e.,ANSYS finite element method,ALPS/SPINE incremental Galerkin method,and ALPS/ULSAP analytical method,were employed together with existing test database obtained from a full-scale collapse testing of steel-stiffened plate structures.Sensitivity study was conducted with varying the difference in plate thickness to define a representative(equivalent)thickness for plate panels with nonuniform thickness.Guidelines are provided for structural modeling to compute the ultimate compressive strength of plate panels with variable thickness.展开更多
Based upon theoretical and experimental methods of acoustics and vibration, the dynamic characteristics of cutting processes have been researched systematically, and a simplified method of quickly estimating the modal...Based upon theoretical and experimental methods of acoustics and vibration, the dynamic characteristics of cutting processes have been researched systematically, and a simplified method of quickly estimating the modal parameters of elastic circular plate structures under clamping has also been advanced. Furthermore, we try the best to explore effectively the noise-reducing ways in the sawing process. In fact, satisfactory results have been achieved in practice.展开更多
The vibrational power flow in the beam-plate assemblies and then with the isolators is investigated using analytical ' power flow' approach based on the some concepts of mechanical mo- bility and structural dy...The vibrational power flow in the beam-plate assemblies and then with the isolators is investigated using analytical ' power flow' approach based on the some concepts of mechanical mo- bility and structural dynamics. Theoretical expressions of the power flow in the structures are given and examined. The numerical results of the expressions are good agreements with the measuring re- sults obtained by the technique of vibration intensity. On the basis of these results, possible ways of reducing the vibrational power flow in the structures are suggested .展开更多
The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy ...The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy equivalence principle and Boltzmann superposition principle, a set of governing equations of nonlinear integro-differential type are derived. By applying the finite difference method, Newmark method and iterative procedure, the governing equations are solved. The effects of loading amplitudes, exciting frequencies and different ply orientations on the critical time to failure initiation and nonlinear vibration amplitudes of the structures are discussed. Numerical results are presented for the different parameters and compared with the available data.展开更多
The mechanical mechanism of thermal expansion buckling of no expansion joint slope pavement undergoing the action of a temperature field was analyzed. By using the regular perturbation method, the formula of perturbat...The mechanical mechanism of thermal expansion buckling of no expansion joint slope pavement undergoing the action of a temperature field was analyzed. By using the regular perturbation method, the formula of perturbation solution for this problem was derived, the relationship between critical laying temperature difference of slope pavement and of level straight pavement was studied, and the unified solution as well as its numerical results was also obtained. In terms of this research, the reasonable laying temperature of no expansion joint slope pavement was given.展开更多
In this paper, the p- version of the finite element method of lines (FEMOL) for the analysis of the Mindlin-Reissner plate bending problems is presented and a class of p-FEMOL elements with polynomial degrees as high ...In this paper, the p- version of the finite element method of lines (FEMOL) for the analysis of the Mindlin-Reissner plate bending problems is presented and a class of p-FEMOL elements with polynomial degrees as high as nine is developed. Numerical examples given in this paper show tremendous performance of the present method: namely, rapid convergence rate, high accuracy for both displacements and stress resultants, removal of shear-locking trouble, capability of dealing with difficult problems such as the boundary layer behavior near a free edge and stress concentration around a hole.展开更多
The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Compar...The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Comparison of the numerical results for several typical problems shows that the DKQ16 element has a very good precision for the linear buckling problems of plates and shells.展开更多
The car body steel structure based on stainless steel material has the advantages of high strength, corrosion resistance, no coating, good fire performance, maintenance free, environmental protection and so on. Howeve...The car body steel structure based on stainless steel material has the advantages of high strength, corrosion resistance, no coating, good fire performance, maintenance free, environmental protection and so on. However, the steel structure of rail transit passenger car body generally adopts the overall bearing structure of plate beam combination, and the structural form is relatively complex, which is composed of beam structure and thin plate combination welding. Through the optimization design of the typical structural design of a project of the company, the manufacturing process is further shortened through the optimization and improvement of the structure, which improves the adaptability of components and production equipment, greatly simplifies the demand for roof structure, reduces the welding of most accessories, improves the standardization level of roof structure, and lays the foundation for the realization of modular car body assembly.展开更多
A structural displacement field reconstruction method is proposed to aim at the problems of deformation mon-itoring and displacement field reconstruction of flexible plate-like structures in the aerospace field.This m...A structural displacement field reconstruction method is proposed to aim at the problems of deformation mon-itoring and displacement field reconstruction of flexible plate-like structures in the aerospace field.This method combines the deep neural network model of the cross-layer connection structure with the fiber grating sensor network.This paper first introduces the principle of strain detection of fiber grating sensor,studies the mapping relationship between strain and displacement,and proposes a strain-displacement conversion model based on an improved neural network.Then the intelligent structure deformation monitoring system is built.By controlling the stepping distance of the motor to produce different deformations of the plate structure,the strain information and real displacement information are obtained based on the high-density fiber grating sensor network and the dial indicator array.Finally,based on the deformation prediction model obtained by training,the displacement field reconstruction of the structure under different deformation states is realized.Experimental results show that the mean absolute error of the deformation of the measuring points obtained by this method is less than 0.032 mm.This method is feasible in theory and practice and can be applied to the deformation monitoring of aerospace vehicle structures.展开更多
基金supported by China Armament Pre-research Foundation(Grant No. 51318010402)UK Engineering and Physical Science Research Council (EPSRC), and China Scholarship Council (Grant No.2010611054)
文摘Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.
基金funding for this study from National Key R&D Program of China(2018YFA0702800)National Natural Science Foundation of China(12072056)+1 种基金the Fundamental Research Funds for the Central Universities(DUT19LK49)Nantong Science and Technology Plan Project(No.MS22019016).
文摘For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.
基金supported by the National Key Research and Development Plan (2020YFB1709401)the National Natural Science Foundation (11821202,11732004,12002077,12002073)+1 种基金the Fundamental Research Funds for Central Universities (DUT21RC (3)076,DUT20RC (3)020)Doctoral Scientific Research Foundation of Liaoning Province (2021-BS-063)and 111 Project (B14013).
文摘This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach.
基金the financial support from the National Natural Science Foundation of China(Grant No.51568012)the Scientific Research Foundation of Guizhou University(GuiDaRenJiHeZi[2023]14)+1 种基金the Science Foundation for Youths of Education Commission of Guizhou Province(QianJiaoJi[2024]020)the Basic Research Project of Guizhou University(GuiDajiChu[2024]18).
文摘To address the insufficient stiffness of the V-shaped reinforced concrete folded plate structure and its construction process causing environmental pollution,a novel assembled monolithic spherical-shaped reinforced concrete ribbed folded plate structure(AMRRFS)was proposed.The advantages of AMRRFS are that its construction process is environmentally friendly while it also exhibits great stability and rigidity.Therefore,an experimental and numerical investigation were conducted on the AMRRFS to investigate its mechanical properties.In addition,the parametric analysis of the AMRRFS was conducted,and some design recommendations were proposed.Under the design load,the experimental findings revealed that AMRRFS possessed excellent mechanical properties.During the overloading phase,the interface between the in situ casting area and the prefabrication area was severely damaged,leading to the loss of the structure’s ability to bear loads.The outcomes from the finite element simulations of AMRRFS closely mirrored the results of the experimental investigation.Based on the parametric analysis,it was recommended that the height of the AMRRFS,the height of the ribs,and the height of the secondary ridge beams shall be 1/7–1/5,1/65–1/50,and 1/34–1/30 of the span,and that the minimum reinforcing ratio for all types of plates shall exceed 1.0%.
文摘The conventional admittance approach utilizing statistical evaluation metrics offers limited information about the damage location,especially when damage introduces nonlinearities in admittance features.This study proposes a novel automated damage localization method for plate-like structures based on deep learning of raw admittance signals.A one-dimensional(1D)convolutional neural network(CNN)-based model is designed to automate processing of raw admittance response and prediction of damage probabilities across multiple locations in a monitored structure.Raw admittance data set is augmented with white noise to simulate realistic measurement conditions.Stratified K-fold cross-validation technique is employed for training and testing the network.The experimental validation of the proposed method shows that the proposed method can accurately identify the state and damage location in the plate with an average accuracy of 98%.Comparing with established 1D CNN models reveals superior performance of the proposed method,with significantly lower testing error.The proposed method exhibits the ability to directly handle raw electromechanical admittance responses and extract optimal features,overcoming limitations associated with traditional piezoelectric admittance approaches.By eliminating the need for signal preprocessing,this method holds promise for real-time damage monitoring of plate structures.
基金the National Key Research and Development Plan(Grant 2016YFB0201601)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant 11821202)+5 种基金the National Natural Science Foundation of China(Grants 11872138,11702048,11872141,11732004 and 11772076)Program for Changjiang Scholars,Innovative Research Team in University(PCSIRT),and111 Project(Grant B14013)Young Elite Scientists Sponsorship Program by CAST(Grant 2018QNRC001)Liaoning Natural Science Foundation Guidance Plan(Grant 20170520293)Fundamental Research Funds for the Central Universities,China.
文摘A topology optimization approach for designing the layout of plate structures is proposed in this article.In this approach,structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory,and structural topology is described explicitly by a set of moving morphable components.Compared to the existing treatments where structural topology is generally described in an implicit manner,the adopted explicit geometry/layout description has demonstrated its advantages on several aspects.Firstly,the number of design variables is reduced substantially.Secondly,the obtained optimized designs are pure black-and-white and contain no gray regions.Besides,numerical experiments show that the use of Kirchhoff plate element helps save 95-99%computational time,compared with traditional treatments where solid elements are used for finite element analysis.Moreover the accuracy of the proposed method is also validated through a comparison with the corresponding theoretical solutions.Several numerical examples are also provided to demonstrate the effectiveness of the proposed approach.
文摘The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering.
基金supported by the National Natural Science Foundation of China (Grants 11072009, 11172013)the Beijing Education Committee Development Project (Grant SQKM2016100 05001)the Beijing University of Technology Basic Research Fund (Grant 001000514313003)
文摘The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.
文摘In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.
文摘ZSM-5 plates with a perpendicular intergrowth structure was synthesized by using a simple amine as the structure directing agent under hydrothermal conditions,in which the mother plate and the perpendicularly standing plates oriented along the(010)and(100)planes of MFI crystals,respectively.During the crystallization process,the mother plate was initially formed on the surface of the amorphous solid gel,while a set of parallel plates perpendicularly grew on its surface,via a homogeneous nucleation mechanism.The mother plate and the perpendicular plates had a similar thickness of 100-200 nm and were characterized by considerably shortened straight and zigzag 10 member ring pores,respectively.This unique intergrowth structure greatly facilitated the diffusion of the reactive molecules in HZSM-5 crystals during methanol conversion to hydrocarbons.
文摘To further understand the dynamic deformation and impact resistance of thin-plate hull structure under impulse wave,the deformation of multi-layer steel plates under underwater impulsive loading has been studied by AUTODYN V6.1.In order to verify the validity of numerical methods,the experimental results are compared with the simulation results.The multi-layer plate types include 1 mm + 3 mm,2 mm + 2 mm,3 mm + 1 mm double-layer,and 4 mm monolayer annealed 304 stainless steel plates.Each type of target plates has four flyer plate's velocities.There are 150,200,250 m /s and 300 m /s.The pressure wave histories in water and deformation of specimens have been predicted and measured by numerical simulations.The simulation results demonstrate that the protective capacity of 2mm + 2mm double-layer annealed 304 stainless steel plates is the best one in this velocity range of flyer plate,as the integral deformation is the smallest among the four structure types.
文摘The aim of this paper is to develop computational models for the ultimate compressive strength analysis of stiffened plate panels with nonuniform thickness.Modeling welding-induced initial deformations and residual stresses was presented with the measured data.Three methods,i.e.,ANSYS finite element method,ALPS/SPINE incremental Galerkin method,and ALPS/ULSAP analytical method,were employed together with existing test database obtained from a full-scale collapse testing of steel-stiffened plate structures.Sensitivity study was conducted with varying the difference in plate thickness to define a representative(equivalent)thickness for plate panels with nonuniform thickness.Guidelines are provided for structural modeling to compute the ultimate compressive strength of plate panels with variable thickness.
文摘Based upon theoretical and experimental methods of acoustics and vibration, the dynamic characteristics of cutting processes have been researched systematically, and a simplified method of quickly estimating the modal parameters of elastic circular plate structures under clamping has also been advanced. Furthermore, we try the best to explore effectively the noise-reducing ways in the sawing process. In fact, satisfactory results have been achieved in practice.
文摘The vibrational power flow in the beam-plate assemblies and then with the isolators is investigated using analytical ' power flow' approach based on the some concepts of mechanical mo- bility and structural dynamics. Theoretical expressions of the power flow in the structures are given and examined. The numerical results of the expressions are good agreements with the measuring re- sults obtained by the technique of vibration intensity. On the basis of these results, possible ways of reducing the vibrational power flow in the structures are suggested .
基金The project supported by the National Natural Science Foundation of China(10272042)the Special Science Fund of the Doctoral Discipline of the Ministry of Education.China(20020532018)
文摘The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy equivalence principle and Boltzmann superposition principle, a set of governing equations of nonlinear integro-differential type are derived. By applying the finite difference method, Newmark method and iterative procedure, the governing equations are solved. The effects of loading amplitudes, exciting frequencies and different ply orientations on the critical time to failure initiation and nonlinear vibration amplitudes of the structures are discussed. Numerical results are presented for the different parameters and compared with the available data.
文摘The mechanical mechanism of thermal expansion buckling of no expansion joint slope pavement undergoing the action of a temperature field was analyzed. By using the regular perturbation method, the formula of perturbation solution for this problem was derived, the relationship between critical laying temperature difference of slope pavement and of level straight pavement was studied, and the unified solution as well as its numerical results was also obtained. In terms of this research, the reasonable laying temperature of no expansion joint slope pavement was given.
文摘In this paper, the p- version of the finite element method of lines (FEMOL) for the analysis of the Mindlin-Reissner plate bending problems is presented and a class of p-FEMOL elements with polynomial degrees as high as nine is developed. Numerical examples given in this paper show tremendous performance of the present method: namely, rapid convergence rate, high accuracy for both displacements and stress resultants, removal of shear-locking trouble, capability of dealing with difficult problems such as the boundary layer behavior near a free edge and stress concentration around a hole.
文摘The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Comparison of the numerical results for several typical problems shows that the DKQ16 element has a very good precision for the linear buckling problems of plates and shells.
文摘The car body steel structure based on stainless steel material has the advantages of high strength, corrosion resistance, no coating, good fire performance, maintenance free, environmental protection and so on. However, the steel structure of rail transit passenger car body generally adopts the overall bearing structure of plate beam combination, and the structural form is relatively complex, which is composed of beam structure and thin plate combination welding. Through the optimization design of the typical structural design of a project of the company, the manufacturing process is further shortened through the optimization and improvement of the structure, which improves the adaptability of components and production equipment, greatly simplifies the demand for roof structure, reduces the welding of most accessories, improves the standardization level of roof structure, and lays the foundation for the realization of modular car body assembly.
基金This work was supported by National Natural Science Foundation of China(61903224,62073193 and 61873333)National Key Research and Development Project(2018YFE02013)Key Research and Development Plan of Shandong Province(2019TSLH0301 and 2019GHZ004).
文摘A structural displacement field reconstruction method is proposed to aim at the problems of deformation mon-itoring and displacement field reconstruction of flexible plate-like structures in the aerospace field.This method combines the deep neural network model of the cross-layer connection structure with the fiber grating sensor network.This paper first introduces the principle of strain detection of fiber grating sensor,studies the mapping relationship between strain and displacement,and proposes a strain-displacement conversion model based on an improved neural network.Then the intelligent structure deformation monitoring system is built.By controlling the stepping distance of the motor to produce different deformations of the plate structure,the strain information and real displacement information are obtained based on the high-density fiber grating sensor network and the dial indicator array.Finally,based on the deformation prediction model obtained by training,the displacement field reconstruction of the structure under different deformation states is realized.Experimental results show that the mean absolute error of the deformation of the measuring points obtained by this method is less than 0.032 mm.This method is feasible in theory and practice and can be applied to the deformation monitoring of aerospace vehicle structures.